Measuring credit risk in a large banking system:

econometric modeling and empirics*

André Lucas,\” Bernd Schwaab,?) Xin Zhang'®
(a) VU University Amsterdam, Tinbergen Institute
(%) European Central Bank, Financial Markets Research

(c) Sveriges Riksbank, Research Division

First version: October, 2012
This version: April, 2013

*Author information: André Lucas, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam,
The Netherlands, Email: a.lucas@vu.nl. Bernd Schwaab, European Central Bank, Kaiserstrasse 29, 60311
Frankfurt, Germany, Email: bernd.schwaab@ecb.int. Xin Zhang, Research Division, Sveriges Riksbank,
SE 103 37 Stockholm, Sweden, Email: xin.zhang@riksbank.se. André Lucas thanks the Dutch National
Science Foundation (NWO) and the European Union Seventh Framework Programme (FP7-SSH/2007-2013,
grant agreement 320270 - SYRTO) for financial support. The views expressed in this paper are those of

the authors and they do not necessarily reflect the views or policies of the European Central Bank or the
Sveriges Riksbank.



Measuring credit risk in a large banking system:

econometric modeling and empirics

Abstract

Two new measures for financial systemic risk are computed based on the time-varying
conditional and unconditional probability of simultaneous failures of several financial
institutions. These risk measures are derived from a multivariate model that allows
for skewed and heavy-tailed changes in the market value of financial firms’ equity.
Our model can be interpreted as a Merton model with correlated Lévy drivers. This
model incorporates dynamic volatilities and dependence measures and uses the overall
information on the shape of the multivariate distribution. Our correlation estimates
are robust against possible outliers and influential observations. For very large cross-
sectional dimensions, we propose an approximation based on a conditional Law of
Large Numbers to compute extreme joint default probabilities. We apply the model to
assess the risk of joint financial firm failure in the European Union during the financial

crisis.

Keywords: systemic risk; dynamic equicorrelation model; generalized hyperbolic dis-

tribution; Law of Large Numbers.
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1 Introduction

We propose a new approach to measure the credit risk in a large system of European financial
institutions, based on the time-varying probability of simultaneous failure of multiple finan-
cial institutions. Such joint failures are akin to financial crises when the banking sector is in
distress. Our measures for joint financial firm failure are based on a dynamic multivariate
Generalized Hyperbolic skewed-t (GHST) density that allows for skewed and heavy-tailed
changes in the market value of financial firms’ equity. The model incorporates dynamic
volatilities and failure dependence, while being consistent with expectations about firms’
marginal probabilities of failure at each point in time. By applying the new model to the
data of European large financial institutions, we show that the model works well even when
the cross-sectional dimension is large. Since the model can be treated as a statistical factor
model, it can also be used to explore the possible economic variables driving the variation

in the default dependence structure.

The systemic risk or the joint default probability of financial institutions has drawn con-
siderable attention since the recent global financial crisis. How to measure the systemic risk
and safeguard the financial system during periods of stress has become the key interest of
policy makers. There are several commonly used approaches to measure the systemic risk.
The Macro stress tests, such as the 2009 SCAP exercise in the U.S. and the 2010 and 2011
CEBS/EBA stress tests in the E.U., are widely used to assess financial stability conditions.
However, they are expensive to conduct (both in terms of manpower at supervisory agen-
cies as well as at the involved financial institutions), subject to a wide range of political
sensitivities, and as a result not suitable for regular financial sector surveillance at monthly
frequency. Model-based Banking Stability Measures (BSM) are considered a valuable alter-
native to more accurate financial stability assessments. The model proposed in this paper
yields two financial stability measures related to the conditional and unconditional default
probability of a certain percentage of banks in the system at one point in time. Such bank-
ing stability measures are currently widely used in central banks and international policy

institutions, see for example ECB (2010).



The construction of useful systemic risk or banking stability measures, however, is not
straightforward. First, the risk of a systemic event, such as the simultaneous failure of mul-
tiple financial firms, usually involves a high cross-sectional dimension, even if only large and
possibly systemically important financial institutions are considered. Extending a copula or
multivariate density model beyond, say, five time series is difficult. Second, the failure de-
pendence among financial institutions is time-varying. In particular, the interconnectedness
across financial firms appears to be stronger during times of turmoil. For example, fire-sale
externalities may connect financial firms through market prices in bad times even in the ab-
sence of direct business links, see for example Lorenzoni (2008), Brunnermeier and Pedersen
(2009), and Korinek (2011). As a result, taking into account higher correlations during times
of stress, in addition to higher marginal risks, is an important feature of financial systemic
risk. We overcome the two problems of a high dimension and time-varying parameter values
by proceeding in two steps. First, we separate the univariate from the multivariate analysis,
as in Engle (2002). Second we impose a parsimonious equicorrelation structure into our
dynamic density, similar to the approach taken by Engle and Kelly (2012). The parsimo-
nious structure then ensures that the computations remain tractable. The time variation
in volatility and correlation parameters is modeled following the Generalized Autoregressive
Score (GAS) framework of Creal, Koopman, and Lucas (2011), and Zhang, Creal, Koop-
man, and Lucas (2011). In our setting, the scaled score of the local log-likelihood drives the
dynamic behavior of the time-varying parameters. As a result, the log-likelihood is available

in closed form and can be easily maximized.

Two studies in particular relate to our construction of financial stability measures. In
each case, the banking system is seen as a portfolio of financial intermediaries whose multi-
variate dependence structure is inferred from equity returns. Avesani, Pascual, and Li (2006)
assess financial failure in a Gaussian factor model setting. The determination of joint fail-
ure probabilities is in part based on the notion of an nth-to-default CDS basket, which can
be set up and priced as suggested in Hull and White (2004). Alternatively, Segoviano and
Goodhart (2009) propose a non-parametric copula approach. Here, the banking system’s

multivariate density is recovered by minimizing the distance between the so-called banking
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system multivariate density and a parametric prior density subject to tail constraints that
reflect individual failure probabilities. We regard each of these approaches as polar cases,
and attempt to strike a middle ground. The proposed GAS framework in our current paper
retains the ability to describe the salient equity data features in terms of skewness, fat tails,
and time-varying correlations (which the Gaussian copula fails to do), and in addition retains
the ability to fit a cross-sectional dimension larger than fifteen (which the non-parametric
approach fails to do due to computational problems). In addition, and for the first time,
parameter non-constancy is addressed explicitly in our new modeling setup. The two above
approaches are inherently static, and rely on a rolling window approach to capture time
variation in parameters. By contrast, we model the parameter dynamics explicitly in a

parsimonious way.

The remainder of the paper is structured as follows. Section 2 introduces a framework for
simultaneous failures of financial sector firms. The econometric framework is introduced in
Section 3 and two new risk measures are proposed in Section 4. Section 5 presents empirical
results on the likelihood of joint failures of large financial institutions in the European Union.

Section 6 concludes.

2 A framework for simultaneous financial firm failures

The structural approach due to Merton (1974) and Black and Cox (1976) is probably the
most widely used approach for the estimation of individual firms’ credit risk. In this firm
value framework, a firm’s underlying asset value evolves stochastically over time, and default
is triggered if the firm’s asset value falls below a certain default threshold. This threshold
is in general determined by a firm’s current liability structure. It is straightforward to
extend the basic premise of the Merton model to a portfolio credit risk setting. In the
case of multiple firms, however, the assumptions regarding the correlation (more generally,

dependence) structure between the firm value processes are important for overall risk.
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First, consider the simple case of two firms ¢ = 1, 2, whose asset values 5;; follow
dSi,t = Sl7t(/i7,dt + UidWi,t)7 (1)

where W, is a standard Brownian Motion, p; and o? are drift and variance parameters,

respectively, and dW; ,Ws, = pdt. The solution to Equation (1) is

Sit = Sipexp [(ul — 03/2) t+ O'iVVZ"t] . (2)
If log S; o = 0, the log asset values are normally distributed as

Yir = log S;p ~ N [(Mz - 01‘2/2) 2 Uizt] . (3)

The use of Brownian Motions and Gaussian distributions has been popular in the literature
for modeling asset returns. However, the conditions of Brownian Motions and the log-
normal distribution are too restrictive for financial datasets. The asset returns are usually
skewed and heavy-tailed, with time-varying (co)variances. The price process does not have
a continuous path as the Brownian Motion, but is identified as a semi-martingale with
jumps (Cont and Tankov (2004)). To incorporate these empirical features, the Generalized
Hyperbolic (GH) Lévy process has gained more attention as a replacement for the Gaussian
assumption. The GH distributions are infinitely divisible (Barndorff-Nielsen and Halgreen
(1977)) and every member of this family can generate a Lévy process that is a semimartingale.
We focus on the GH skewed-t distribution in this paper, which is an asymmetric version
of the Student’s t distribution. Our analysis can be easily extended to several other GH
distributions. Eberlein (2001) provides a useful survey on asset pricing models under the

GH Lévy process assumption.

We write the firm values in a Lévy process framework as in Bibby and Sgrensen (2001),

ASis = Go(S:)loa(F(S.)o(Si )]t + \fo(Si )W, (4)



with v(S;;) and f(S;;) two continuously differentiable strictly positive real functions defined
on R. Following the arguments in Bibby and Sgrensen (2003), we can find suitable functions
for a prescribed marginal distribution, for instance a GH skewed-t distribution. The asset

value becomes

Si,t = SO,t €xXp (ﬁi,t),

where £; is a Generalized Hyperbolic Skewed-t Lévy process and the log asset values are

Generalized Hyperbolic Skewed-¢ distributed at discrete time intervals as
Yix = 1Og Si,t ~ GHST(6zta Yis V)‘

Compared to the Student’s ¢ distribution, the GHST distribution is an asymmetric distribu-
tion with v; as the skewness parameter. It is flexible enough to capture the most interesting
data features with a limited set of parameters. The dynamic version of the GH distribution
proposed in Zhang, Creal, Koopman, and Lucas (2011) can accommodate in addition the
time-varying covariance matrices. In this paper we adopt the same framework, which is now
used to model the correlated defaults in a large portfolio.

In the Merton model and also in our paper, a borrower ¢ defaults at time ¢ if y; , falls below
the firm specific default threshold y;,. Therefore, at time ¢, the firm’s marginal probability

of default p;; is given by

Pix = F(y;t)a (5)

where F'(-) is the cumulative distribution function (CDF) of a standard univariate GHST

distribution. Similarly, the joint default probability of two borrowers is

ey = F) (yita y;,t) ) (6)

where F), is the bivariate standard GHST distribution function with correlation p.
If an estimate of a firm’s marginal default probability is available, say from Moody’s KMV
EDF estimates, then (5) implicitly defines the corresponding threshold value y;,. With these

thresholds, we are able to determine a distress region for the multivariate distribution. A
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firm defaults at time ¢ when its asset value y;; fall into the region (—oo,y;;). In this paper,

we adopt EDF estimates as the estimated probability of default.

3 The model

3.1 The Dynamic GH skewed-{ model

The risk measure we propose is the joint default probability for a large portfolio of N
banks. In the multivariate case, the joint default probability can be inferred from the mar-
ket by considering the interrelationship of equity returns. We assume the equity returns
Y = (Y14, -+, yn,) follow a multivariate dynamic Generalized Hyperbolic skewed-t (GHST)

distribution. The GHST distribution can be obtained as a normal mean-variance mixture

V ~ ~
Y= (g — E)LW + VL, (7)

with a scalar random variable ¢, ~ InverseGamma(r/2,v/2) where ¢ is independent of ¢,
and N-dimensional ¢ ~ N(0,Iy), and L, is an N x N loading matrix which defines the
individual exposures to the common risk factor ¢;. The mixing structure introduces non-
trivial clustering in the tails compared to the situation with only a Gaussian factor ¢;. The

GHST density of y; is given by

pEol- K% ( d(ye) - (7”7)) o' Le H(ye—iit)

Py X0, v, v) = — - . , (8)
INCSUSIAE: d(y) T - (7))
dly) = v+ (Y — i) S (ve — i), (9)
- v ~
:ut - —V_2Lt% (1())



where K, (b) is the modified Bessel function of the second kind, > = ZNLth}; is the scale matrix,

see Bibby and Sgrensen (2003).

Lt — [th—'7 ( 1 1)

212
T/T —1 _ v I /
(T'T) 2 w2 —a "

(12)

The matrix L, characterizes the time-varying covariance matrix ¥, = L, L}. We consider the

time-varying covariance matrix of y; as

Et - LtL; — DthDt, (13)

where D, is a diagonal matrix holding the volatilities of y;; and R; is the correlation matrix
of equity returns y;. The marginal distribution for a multivariate Generalized Hyperbolic
skewed-t distribution is a univariate Generalized Hyperbolic skewed-¢ distribution. The

skewness variables can be different in each marginal.

We assume the dynamic covariance matrix ¥; depends on the unobserved factor f;, where
f+ follows the Generalized Autoregressive Score process as specified in Creal, Koopman and

Lucas (2011, 2012) and Zhang, Creal, Koopman, and Lucas (2011).

p—1 q—1
fr+1 ZW+ZAiSt—i+Zijt—j7 (14)
i=0 Jj=0
5¢ = St Vy, (15)
Vi =0 peu(y| Fio1; ft,0)/0fr, (16)

w is a vector of fixed intercepts, and A; and B; are fixed parameter matrices. In order to

obtain our result below, we define

vec(L) = DY vech(L) (17)
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for a N x N lower triangular matrix L,

vech(S) = Byvec(5) (18)

for a symmetric matrix S, and the commutation matrix Cy for an N x N matrix X as

vee(X) = Cyvec(X'). (19)

Result 1. Ify, follows a GHST distribution p(yy; 7, v), where the time-varying covariance

matriz is driven by the GAS model (14)-(16). The dynamic score is

V: = W, H,vec (wt Yy — 3 — (1 — ﬁw) Eﬂ’yé) ) (20)
o — v+ N k# < d(ye) - (v ’Y)) (21)
2d(y;) 2/d(y)/(vy)
Ovech(%;)’
St Sl 7 22
v, ST (22)

H = (7' 0% )(Le@Iy)(T" @ Iv) Dy (By(Inz + Cv)(Le @ In)DY) ™, (23)

where we define k‘#() =In K#() with first derivative k', 5 (+). The matrices Uy and H,

2

are time-varying, parameterization specific, and depend on f;, but not on the data.

The dynamics driven by the score V; can be seen as a local improvement of the likelihood
to the new data observed at time ¢, and S; is a scaling matrix for the score V,. Typical choices
for the scaling matrix &; are the unit matrix or inverse (powers) of the Fisher information
matrix Z;_q, where

71 =E [VtVH Yt—1,Yt—2, - - ] .

For example, S; = 7, accounts for the curvature in the score V;. With the choice of
scaling matrix as the inverse Fisher information matrix, the GAS step s; can be seen as a
Gauss-Newton improvement step of the local fit of the model. As the Fisher information
matrix for the GH distribution has no analytical expression, we instead use the inverse Fisher

information matrix from the Student’s ¢ in our current paper. Zhang, Creal, Koopman, and
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Lucas (2011) demonstrate that this results in a stable model that outperforms alternative

models if the data are fat-tailed and skewed. We obtain

-1

S, = {xp;a ® L7 [9G — vec(I)vec(I)|(I® i;l)@t} , (24)
where g = (v + N)/(v +2+ N), and G = E[z,x} ® x,2}] for z; ~ N(0,Iy).

3.2 Estimation and restrictions

Zhang, Creal, Koopman, and Lucas (2011) show that the GAS dynamic structure has su-
perior performance under skewed and fat-tailed distributions. However, evaluating the full
covariance matrix in the full likelihood is cumbersome computationally if the dimension
of the data is large. Therefore, we separate the estimation of the covariance matrix into
volatility estimation and correlation estimation procedures. The algorithm works in two

steps.

1. Estimate the log-volatility log(o;;) for each series with a univariate dynamic GHST
model. The skewness parameter is estimated for each series separately, but the kur-
tosis parameter is fixed at 5. The motivation is to ensure that the marginal GHST
distributions are internally consistent with the multivariate GHST distribution. The
data at time ¢ is standardized by the volatility o;;. The standardized data is tested for

serial correlation using the F-test suggested in Engle (2002).

2. Estimate the correlation matrix R; of the standardized returns using the volatilities
from the first step. The correlation matrix is driven by the factor f; from the multivari-
ate dynamic GHST model. Again the kurtosis parameter is set ex ante as ¥ = 5 and
the skewness parameters are equal to those from the univariate distributions obtained
from the first step. We need a parametrization as in Engle (2002) or Zhang, Creal,

Koopman, and Lucas (2011) to ensure that R; actually is a correlation matrix.

In the univariate and the multivariate GH skewed-t model, we fix the degrees of freedom pa-

rameter for all the marginal distributions at five. We can also estimate a GHST distribution
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in order to obtain a sensible degree of freedom. Interestingly when estimate static GHST
model in a exploratory analysis, we find five a reasonable parameter value that ensures the

distribution captures the tail behavior of the data.

The idea behind the algorithm is simple. We first use the dynamic GHST model as a filter
for the volatility in the equity returns for each of the series. The standardized equity returns
are then used in a multivariate dynamic GHST model model, where the covariance matrix
is the correlation matrix. It is similar to the two-step procedure or the composite likelihood
method in Engle (2002), Hu (2005), and other studies that are based on a multivariate
GARCH framework.

If we want to work with a large dimensional dataset, we still need to impose some further
restrictions to confront the computational difficulties. One difficulty arises from estimating
the unconditional mean w in Equation (14). In a dataset of N time series, we have to
estimate N (N — 1)/2 coefficient for the unconditional mean of factors w. In order to reduce
(N=1)/2

the computational difficulty, we estimate the unconditional mean of the factors f € RV

separately and estimate a scalar w in the equation (14),

p—1 q—1
Jfrn=wf+ Z Aisii + Z B fij; (25)
i=0 §=0

The w is now defined as the levels of correlation coefficients proportional to the uncondi-
tional mean of our factors. We choose A and B scalar parameters as in the DCC model.
This reduces the total number of parameters in GAS model to three only, irrespective of the
data’s cross-sectional dimension. In practice, we can also fix w at one, because the param-
eter estimate is usually close to one. It is sometimes called “correlation targeting” in the

literature.

One of the attractive features of the GAS model is the possibility to introduce a latent
factor structure to describe the time variation in the dynamic parameters we are interested
in. We could impose the restriction that several time-varying parameters are driven by
common factors. This is extremely useful to process high-dimensional data from a large

system. In the next section, we introduce the block GAS-Equicorrelation model and the
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GAS-Equicorrelation model as two examples of such a framework.

3.3 The Block GAS-Equicorrelation model

With the two-step estimation procedure, the task of maximizing the multivariate GHST
likelihood in a large system becomes more feasible. The computational burden is largely
reduced due to the separation of the likelihood for volatilities and correlations. Still, this
method is cumbersome if the data dimension becomes high, for instance around 100. The
advantage of the factor structure in the GAS framework (14) underlying the dynamic cor-
relation matrix makes it possible to address this problem by using common factors. We
assume the factor dimension to be smaller than the number of correlations. This defines a
multi-factor structure underlying the dynamic correlation model. In the literature, we call
correlation matrices with such a structure a block dynamic equicorrelation matrix. Assume
that N firms fall into m different groups according to their exposure to a common systemic
risk factor. Firms have equicorrelation p? within each group and p; - p; between groups i and
7. So we have N = ny +ng+ - - - +n,, random variables that follow a GH distribution with a
correlation matrix that has a block equicorrelation structure, where n; denotes the number

of firms in group ¢. The correlation matrix at time ¢ is given by

(1= pi ), e . 0 p1,+41
0 (1=p3 ), - 0 p2.t02

Ro=| s S S R Y P RS
0 0 o (=02 L, Pm,tlm

(26)
where ¢; € R™*! is a column vector of ones and |pit] < 1 to ensure the positive-definiteness

of R;. The matrix L; and the inverse of L; can be calculated explicitly by assuming

al,tInl e I 0 bll,tJH b127tz]12 e blm,tjlm
0 asely, ... 0 biosJ: boo 4 J: coo bomidom

Lt _ 2,tdngy i 12,tJ21 22,t22 2m,tJ2 ’ (27)
0 0 e am,tInm blm,tjml b2m,tt]m2 . bmm,tJmm
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where J;; € R™*" is a matrix of ones J;; = &[;. We solve for all the parameters in the
equation R; = L,L}, where L; is symmetric. The block equicorrelation model allows us to
obtain analytical solutions for the determinant of R;. As a result of the Matrix Determinant

Lemma (see Harville (2008)), the determinant of the matrix Ry is

det(R;) = det(Z, +wu)) = (1 + u,=;  uy) det(Z,)

2 2
e — | (1 — ... (1 — m,
1— p%’t 1— 02, (1—piy) (1= pins)

= |1+

with =; the diagonal matrix in the first term on the righthand side of (26) and wu; the vector
in the second term, such that R, = =; + usu;. The determinant of matrix L; is easy to
find as the square root of this value. The analytic expressions facilitate the computation of
the likelihood and GAS steps in high dimensions. The time-varying correlation coefficients
Pits -, Pmye are driven by the GAS factors from a GH skewed-¢ distribution. We can derive

the GAS model with these restrictions.

Result 2. If y; follows a GH skewed-t distribution and the time-varying correlation matrix
R; has a block equicorrelation structure, the dynamic score follows Equation (20) and the

matriz Hy stays the same as Equation (23). We denote the time-varying parameters in Ry

as © = (p14,- -+, pms) = fi. The major difference is avg}(lljt)/ as part of ave{;—ft)/ in Wy,
00 ... 0 pl,tgl 0 0 p1’t€1
Ovec(Ry)' Do T p2.442 : : p2.4t2
S = =201 - vec + ® + ®
fie 00 I, 0 : 0, 0, :
00 ... 0 pm,tgm 0 0 pm,tgm

(28)

The simplest case of the block GAS-Equicorrelation model is if we only have one block,
which we call the GAS-Equicorrelation model. Following Engle and Kelly (2012), we then

assume the correlation matrix R; with the equicorrelation structure:

Ry = (1= p)L+ pell, (29)
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where p; € (N_—_ll, 1). Under such an assumption, the dynamic score equation stays the same

as (20), but the matrix computations are simplified.

Result 3. If we assume one equicorrelation structure for the correlation matriz, the GAS

model works as in the equations in Section 3.1. The only difference is that VU, simplifies to:

dat dCLt dbt dbt ,
v, = (— I —d+ — —Nd)/¢ 9 30
: (dptcvec( N)+ (dpt + dptc+ I, ) N2> (fe), (30)
dCLt 1
- 31
dp 21— py (31)

db; _ L( N -1 n 1 )’ (32)

dp, 2 VI—pi+Np  V1—p
c—\/ 02y v+ v P A
where the scalar ¢ = \/1#7, d= %, pe = 355, and 02 = (1,7232?%4)'

The GAS-Equicorrelation model may seem too restrictive at first. In our application,
however, the data we are dealing with are European financial institutions that have strong
economic and financial links and the equicorrelation captures our salient parameter of inter-
est: the systemic dynamic correlation in the entire system of banks considered. We compare
the equicorrelation model with the full GAS model in Section 5.1 for a small system where
we can still estimate both models. For the large system with more than 70 institutions, we

only consider the GAS-Equicorrelation version of the model.

4 The risk measures in a large system

There are multiple ways to construct a financial sector stability measure. For example, a
higher probability of at least a certain number of firms failing over the next year is a natural
measure of systemic risk. Such a measure is for example constructed and tracked in the Euro-
pean Central Bank’s biannual Financial Stability Report, see for example ECB (2010). Here
we use the same definition of a systemic risk measure. After estimating the conditional co-
variance matrix through the dynamic-GH model, the time-varying correlation and volatility
mechanism are used to calculate the probability of failure of European financial firms. With

this estimated multivariate density, we can thus produce a systemic risk measure. In this
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section, we calculate this measurement either by simulation or by analytic approximations.

The latter are particularly useful for large cross-sectional dimensions.

The straightforward approach is based on simulations of equity returns. As discussed
in Section 2, a firm default may happen if the equity return is too negative compared to
pre-specified default threshold. In the multivariate distribution, these thresholds define a
distress region. We can generate simulations and compute tail probabilities by counting the
number of realizations in this pre-determined distress region. In this paper, we simulate from
the estimated dynamic multivariate GHST distribution. The distress region is determined
by the default thresholds transformed from Moody’s EDF estimates. This simulation based

method is general enough for all different distributions and model specifications.

When the dimension of the dataset becomes too large, the simulation based risk mea-
surements become inefficient. We need a large number of simulations. Interestingly, we are
able to explore the advantage of the equicorrelation structure for the simplified correlation
matrix. This is the alternative approach to produce the systemic risk in a large system. We

1 We can use a Law of

consider the system of banks as homogenous portfolio of equities.
Large Number (LLN) result in the context of credit risk as in Lucas et al. (2001). We define
the Systemic Risk indicator as the probability that a certain number of banks default in the

same timespan. The number of defaults at time ¢ is

N
1
CNt = N Z Wy < y;t|ﬁta St} (33)

=1

Given that the 1{y;; < y;,}s are conditionally independent, the Law of Large Numbers tells

us if N = +o0,

CNt

2
=i

E({yi: < yzt|f€t7§t}) (34)
1

-
Il

I
2|~

Ply:, < yzt‘ﬁt&]- (35)

=1

!The homogeneity assumption is only used for exposition. Different ~y; and p; in the block equicorrelation
structure can easily be allowed for.
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If the returns are GHST distributed and have a block equicorrelation structure as equation

(26), we can model the banks’ market values as:

Yo = (G — p)y + VSizt, (36)
2 = Mk + Ney, (37)
where k; ~ N(0,1) and ¢ ~ N(0,1y), n is a vector of parameters (n;,,--- ,nn.)’, and Ay is
an N x N diagonal matrix with (A0}, -, Apf),) on the diagonal. We are interested in

finding the values of n; and A; such that Var(z) = R;. We know

Var(y;) = Zi + wug

= A+ penem, + ol (38)

So the parameters n; and A; should satisfy the following equations,

1_2

Ni = Pit fori=1.--.m, (39)
te
pemeny = uguy — 02y (40)

This is a two-factor model with a common Gaussian factor k; and a mixing factor ¢;. The

stability measure in this setting is given by

pe=P(Cni > cpa), (41)

where we can compute the measure conditional on the latent factors x; and ¢,

N
1 *
Cpt = N ; P[Z/i,t < yi,t’“t, s, (42)
. (Y e + 1eyi — se%i) /NSt — ek
Plyis <yiilke, ol = @ ( Lt \ v Kt; St | - (43)
it

The risk measure is related to the number of defaults as a proportion in the portfolio. Using
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equation (42), we rewrite the threshold common factor x; = k;(cp+,<) as a function of the
default proportion c,, and the mixing variable ;. We are able to compute the joint default

probability numerically as

Pt = P(CN,t > Cp,t) = /P(’ft < ’if(cp,t,%))p(gt)dgt- (44)

Similarly, we can compute the probability of certain proportion c, ¢ of the system excluding

bank ¢ defaulting conditional on the event that bank i fails.

P<CN—1,t > C;,; yi,t < y;k,t)
Py < y;t)

P(Cn_1y > C;,ﬂ,%’,t < Yit)

*
Z,L-7

f (I)2<\/1i—0_%7 H:(Cit?gt)777i,t)p<gt)d§t
fP(/ft < ’ff(cli,tﬂt))p(%)dgt 7

(45)

where
M S L

A
Z,t \/?t

from Equation (36), ®3(-,-,7;¢) is the bivariate normal CDF with correlation 7;;, and

(46)

Ky (¢}, <) denotes the corresponding threshold common factor when bank i’s equity return
fall below the threshold y;. This conditional probability is close to the Multivariate extreme
spillovers indicator of Hartmann, Straetmans, and de Vries (2005).

We define the average of this conditional default probability over N financial firms as
the Systemic Risk Measure (SRM), as it measures the possibility that an individual credit
event increases the level of systemic risk. We apply the two measurements proposed here in

the empirical section.

5 Empirical application

In this section, we compute the banking stability measure in the European Union. We

observe 73 major financial groups with complex interactions. The data contain monthly
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observations of equity prices and estimated EDF's for all 73 financial institutions. Our whole
sample covers the period January 1992 to June 2010, but with missing observations of several
names in the beginning of the sample. Dealing with missing values in our model’s setting is
straightforward. Both the likelihood and the score steps in the dynamic GHST model adapt
automatically if data are not observed at particular times and there are no sample selection
issues.

The analysis in this section consists of two parts. To compare the dynamic GHST
model with the block GAS Equicorrelation models, we choose a subsample consisting of ten
European banks. The full multivariate model from Section 3.1 is estimated with a time-
varying covariance matrix. We also show the estimation results for models in Section 3.3.
These results are presented in Section 5.1. Second, we impose the GAS Equicorrelation
structure in the dynamic GHST model for the whole sample of 73 financial institutions. The
conditional Law of Large Numbers approximation is implemented to compute the Banking
Stability Measure and the Systemic Risk Measure. Section 5.2 includes the results for this

analysis.

5.1 The system of major European banks

In our first analysis, we select a geographically diversified sub-sample of 10 banks in the
Euro Area: Bank of Ireland, BBVA, Santander, BNP Paribas, Commerzbank, Deutsche
Bank, Societe Generale, ING, UniCredito, National Bank of Greece. To estimate the time-
varying correlations and volatilities, we use monthly log returns from January 1994 to June
2010 from Bloomberg. The dataset contains 198 observations for each series. The EDF data
used to compute the distress thresholds are provided by Moody’s KMV. From the descriptive
statistics in Table 1 we see that all equity returns are skewed and fat-tailed. Commerzbank
and ING Group stand out with a pronounced skewness of -1.10 and -1.64, and a kurtosis of
8.33 and 6.99, respectively. However, the Bank of Ireland has a large kurtosis of 16.053. We
model the equity returns from all 10 banks with our skewed and heavy-tailed dynamic GH
skewed-t model.

We first estimate the full correlation matrix with forty-five pair-wised dynamic corre-
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Table 1: Sample Descriptive Statistics.

The descriptive statistics for the monthly equity returns between January 2000 and June 2010. The sample
mean values are all very close to zeros. The standard deviations, minimum and maximum values are
multiplied by 100 respectively in the table. All skewness and excess kurtosis are significantly different from 0.

Mean Std.Dev. Skewness Kurtosis Minimum Maximum

Bank of Ireland 0.000 1.309 -0.594 16.053 -113.917 106.153
BBVA 0.000 0.710 -0.512 3.220 -38.894 37.003
Santander 0.000 0.720 -0.725 3.758 -40.720 37.609
BNP Paribas 0.000 0.675 -0.502 3.261 -34.001 32.959
Commerzbank 0.000 0.940 -1.101 5.474 -67.779 45.536
Deutsche Bank 0.000 0.760 -0.421 3.906 -46.588 45.444
Societe Generale 0.000 0.777 -0.968 4.110 -53.679 29.201
ING 0.000 0.896 -1.647 8.939 -73.367 45.187
UniCredito 0.000 0.752 -0.048 3.282 -44.318 36.017
National Bank of Greece 0.000 0.938 0.336 2.324 -48.178 53.652

lations driven by the scaled autoregressive scores. The dynamics of these correlations are
different over time, but they share some commonality. For instance, all correlations go
up during the financial crisis, especially after the failure of Lehman Brothers in September
2008. Figure 2 depicts the correlation series of the other nine banks with the Bank of Ireland,
which received recapitalization and a bail-out from the Irish government and ECB in 2009
and 2010. The correlations show a significant drop around the year 2001 and rise during the

financial crisis 2008 and onwards.

The estimated volatility series are plotted in separate panels in Figure 1. The volatility
estimates are obtained via estimation of the GH skewed-¢ distribution for each individual
time series. All parameters in the volatility models are significant at the 5% significant level,
as shown in Table 2. From the graph, we see three highly volatile periods corresponding
to either financial crises or global economic recessions. The most recent period with clearly
high volatility begins in Sept. 2008, when the failure of Lehman Brothers brought down
the stock prices of all banks. But the magnitude of this increase differs from one institution
to the other. The most volatile time series is the Bank of Ireland’s equity return. In the
midst of the Global Financial Crisis, the Irish Banking Crisis hits this largest Irish bank
even harder. The Bank of Ireland was recapitalized by the Irish Government in February

2009 and further bailed-out by the ECB and IMF in 2010. The idiosyncratic shock to the

20



Bank of Ireland, on top of the common shock from the Lehman Brother’s bankruptcy, drives
up its volatility even higher.

We filter the equity returns with the estimated volatilities and apply a multivariate GH
skewed-t model in the second step. The time-varying correlation matrices are assumed to
follow the GAS model in Equations (14) and (16). We implement four dynamic GHST

models imposing different parameterizations on the dynamic correlation matrix.

As a comparison, we estimate the dynamic GH skewed-t model with the GAS-Equicorrelation
model (Equations (29)-(32)), and the two-Block GAS-Equicorrelation model (Equations
(26)-(28)) on the same sample. The banks are separated into two groups. The first group
contains the Bank of Ireland, BBVA, Santander, UniCredito and the National Bank of
Greece. The second group includes the rest banks. The correlation estimates are plotted
in the bottom panels in Figure 2. As benchmarks, we also include the average correlation

from the Rolling Window (RW) method with the window size set to 12 months.

If we compare the Equicorrelation model outputs and the average correlation from the
GAS model and RW method, the dynamic equicorrelation appears to be an average of the
pairwise correlations. The flexible GAS-GHST model allows for more heterogenous dynamics
on the pair-wise correlation coefficients. But we also see that the equicorrelation model picks
up the most salient comovements in the data, such as the drop of correlation in 2001 and
the increase after 2008 due to the financial crisis. In the model estimates from the two-block
GAS-Equicorrelation matrix, we see that the three correlation estimates exhibit similar time-
varying patterns as the equicorrelation dynamics. But we start to see differences in particular
periods, for instance around the year 2008. It seems that the correlation of banks in the first
group is higher in the crisis period. We provide the parameter estimates and log-likelihood
values from the dynamic correlation models in Table 2.

With the estimated GH skewed-t distributions, either with the full model or with the
equicorrelations and block equicorrelations, we can compute the Banking Stability Measure
(BSM) and Systemic Risk Measure (SRM) given the default thresholds from inverting the
GH skewed-t CDF at the observed EDF levels. The banking stability measure is defined

as the joint probability of three or more banks defaulting. The Systemic Risk Measure is
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Table 2: The Estimation Results: Part I.

The parameter estimated in our GAS-GHST models for ten banks’ equity returns. We use
univariate GAS-GHST models for the marginal volatility. With the filtered returns, we
estimate three dynamic correlation models: the GAS Equicorrelation model, the Block GAS
Equicorrelation model, and the GAS model with full correlation structure. All parameters
are significant at the 5% level.

Dynamic Volatility

A B w 107 Log-lik
Bank of Ireland 0.201 0.964 0.093 -0.206  -725.655
(0.003) (0.002) (0.005) (0.004)
BBVA 0.154 0.902 0.220 -0.145  -701.432
(0.003)  (0.004)  (0.010)  (0.004)
Santander 0.196 0.884 0.256 -0.163  -696.317
(0.004) (0.005) (0.011) (0.004)
BNP Paribas 0.212 0.866 0.295 -0.152  -691.252
(0.005)  (0.006) (0.014)  (0.005)
Commerzbank 0.168 0.929 0.175 -0.167 -738.160
(0.003)  (0.003) (0.006)  (0.004)
Deutsche Bank 0.168 0.910 0.211 -0.105  -715.436
(0.003) (0.004) (0.010) (0.005)
Societe Generale 0.196 0.918 0.189 -0.134  -711.646
(0.003)  (0.003) (0.008) (0.005)
ING 0.167 0.915 0.200 -0.224  -719.552
(0.003)  (0.003)  (0.007)  (0.004)
UniCredito 0.126 0.969 0.071 -0.064  -708.966
(0.003) (0.002) (0.004) (0.005)
National Bank 0.141 0.927 0.188 -0.060  -768.016
of Greece (0.003)  (0.003)  (0.008)  (0.005)
Dynamic Correlation
A B w1 w9 ot Log-lik AIC BIC
GAS EquiCorr (1) 0.116 0.915 0.205 -0.071 -2050.956  4111.91  4128.35
(0.054) (0.070) (0.210) (0.024)
GAS EquiCorr (2) 0.070 0.907 0.931 1.417 -2052.116 4114.23  4130.67
(0.029) (0.057) (0.161) (0.148)
GAS Model 0.027 0.717 1.007 -1952.200 3914.40 3930.84

(0.009)  (0.099)  (0.009)
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Figure 1: Volatility estimations for the banks’ equities

The volatility estimates from the Dynamic GH Skewed-t for all the banks’ stock return
data. (BBVA stands for BBV.Argentaria and DB refers to Deutsche Bank.)
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Figure 2: Correlation estimations between the other banks and the Bank of Ireland

The correlation estimates from Dynamic GH Skewed-t model with banks’ stock returns.
We selected the correlations of the Bank of Ireland’s with other banks in our sample. The
last two panels are from a one-factor and two-factor equicorrelation model in the skewed-¢

distribution.
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constructed with the conditional statement of two or more banks defaulting given bank ¢
defaulted. With the estimated multivariate GH skewed-t distributions, we can use simu-
lations to compute the risk indicators. We use 10,000,000 simulations at each time ¢ and
count the number of banks under stress. As we obtain the simulations directly, we can
compute the conditional and unconditional default probabilities. Alternatively if we use the
GAS-Equicorrelation model, we can analytically calculate these measures under the LLN ap-
proximation suggested in Section 4. The analytical calculation is fast and less cumbersome
than the simulation method.

From Figure 3, we see that the dynamic patterns of the risk indicators are very sim-
ilar irrespective of the computation method used. The Banking Stability measures simu-
lated/calculated from different correlation models are close to each other. The LLN approx-
imated risk measure somewhat understates the risk in normal times and overestimates the
risk in crisis times after the year 2008. This is because the number of banks is as small
as 10 in our current setting, which makes the LLN approximation less accurate. Figure 4
plots the Systemic Risk Measure proposed in Section 4. The simulated (SIM) measure is
computed with the straightforward simulation method and the correlation matrix is driven
by the estimated GAS model in Result 1. The LLN approximated Systemic Risk Measure is
calculated analytically based on the dynamic Equicorrelation estimates. We see the differ-
ence in the SRM between these two methods. The approximated SRM with the conditional
Law of Large Numbers is always lower than the simulated SRM, but the pattern over time
is similar. If we look at the average of the approximated indicator in the last panel, we see a
break around the year 2002 in the mean for the analytical SRM. This may be attributed to
the introduction of the Euro as a common currency, which tightened the interconnectedness

of the European banks.

5.2 European large financial institutions

The task becomes more challenging with a few European large financial institutions. These
financial institutions are large and possibly systemically important, as their failure would

likely spread and have adverse implications for financial markets or other financial institu-
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Figure 3: The Banking Stability Measures: a comparison

The Banking Stability Measure constructed from the Dynamic GH skewed-t models. A
comparison study is provided here with two different correlation assumptions. The top left
and bottom left panel contains the BSM with Dynamic Equicorrelation, but the top one is
calculated with the analytical computation and the other one is simulated. The top right
plot shows the simulated BSM with the full model correlation result. These measures are
defined as the probability of three or more firm defaults.

26



Bank of Ireland-LLN === Bank of Ireland-SIM — BBVA-LLN =====BBVA-SIM

1.00 1.00
0.75
0.50
! |
2000 2010 2000 2010 2000 2010
1.00 — BNP Paribas-LLN === BNP Paribas-SIM 1.00 Commerzbank-LLN —Commerzbank-SIM‘ 1.00
0.751 0.75 0.7
0.50~ 050 0.50
I | | 0.25 | | | |
2000 2010 2000 2010 2000 2010
1.00 Societe Generale-LLN === Societe Generale-SIM‘ 1.0 — ING-LLN === NG-SIM 1.00 UniCredito-LLN —Unicredito-SIM‘ .

0.75 0.8 0.75

0.50 0.6 0.50

\ ! \ !
2000 2010 2000 2010 2000 2010

NatBank of Greece-LLN === NatBank of Greece-SIM ‘ 0.75
0.70

0.65

0.60
| | | |
2000 2010 2000 2010

Figure 4: The Systemic Risk Measures: a comparison

The Systemic Risk Measure constructed from the Dynamic GH skewed-t models. We show
the result of simulated SRM with correlation estimates from a Full GAS model, as well
as the LLN approximated SRM from a Dynamic Equicorrelation model. The last panel
contains the average of the SRM measure over all firms. SRM is defined as the probability
of two or more firms defaulting given firm i failing.
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tions operating within the system.

The datasets we use are monthly equity returns from 73 financial institutions. These
institutions are European banks, insurance companies and investment companies. In Table
3, we provide a full list of the names in our sample. The sample skewness and kurtosis for
each time series is also included in the table. Most equity return series exhibit negative

skewness and fat-tailness.

Table 3: Sample Skewness and Kurtosis Statistics.

Descriptive statistics for the CRSP stock returns between January 1970 and June 2010.
All observations are monthly log returns. All names are large European financial firms
including banks, insurance companies and investment firms.

Name Skewness Kurtosis Name Skewness Kurtosis
ACKERMANS & VAN HAAREN -0.10 3.92 DEUTSCHE BANK (XET) -0.36 6.55
AEGON -1.13 6.75 DEUTSCHE BOERSE (XET) -0.30 3.98
AGEAS (EX-FORTIS) -3.78 30.21 DEUTSCHE POSTBANK (XET) -1.39 8.42
ALLIANZ (XET) -0.58 5.77 DEXIA -0.83 7.56
ALLIED IRISH BANKS -2.16 13.41 EFG EUROBANK ERGASIAS -0.21 5.19
ALPHA BANK -0.42 4.36 ERSTE GROUP BANK -0.61 9.86
GENERALI -0.83 5.40 EURAZEO -0.45 5.00
ATRIUM EUROPEAN RLST. -0.32 10.60 FONCIERE DES REGIONS -0.85 8.33
AXA -1.05 6.67 GECINA -0.33 7.49
AZIMUT HOLDING -0.26 3.43 GBL NEW -0.85 5.06
BANK OF IRELAND -0.32 13.30 SOCIETE GENERALE -0.72 4.72
BANKINTER 'R’ 0.09 4.97 HANNOVER RUCK. (XET) -0.85 6.65
BANCA CARIGE -1.36 8.54 ICADE -0.29 3.76
BANCA MONTE DEI PASCHI -0.95 5.76 IMMOFINANZ -2.75 19.24
BANCA POPOLARE DI MILANO -0.61 4.37 ING GROEP -1.36 9.58
BANCA PPO.DI SONDRIO -0.28 3.71 INTESA SANPAOLO -0.96 5.40
BANCA PPO.EMILIA ROMAGNA -1.02 7.33 KBC GROUP -0.99 9.54
BBV.ARGENTARIA -0.33 4.47 KLEPIERRE -0.97 6.20
BANCO COMR.PORTUGUES 'R’ -0.50 4.10 MAPFRE -0.40 4.94
BANCO DE VALENCIA -0.25 4.27 MARFIN INV.GP.HDG. 0.19 3.78
BANCO ESPIRITO SANTO -1.03 6.19 MEDIOBANCA 0.11 4.36
BANCO POPOLARE -0.99 8.06 MUENCHENER RUCK. (XET) -0.37 10.20
BANCO POPULAR ESPANOL -0.34 6.42 NATIONAL BK.OF GREECE -0.37 4.70
BANCO DE SABADELL -0.24 3.99 NATIXIS 0.26 8.21
BANCO SANTANDER -0.66 4.73 BANK OF PIRAEUS -0.45 3.62
BNP PARIBAS -0.66 6.56 POHJOLA PANKKI A -1.77 13.97
BOLSAS Y MERCADOS ESPANOLES -0.07 3.85 RAIFFEISEN INTL.BK.HLDG. -0.99 5.89
CATTOLICA ASSICURAZIONI -0.35 5.45 SAMPO A’ -0.48 3.63
CNP ASSURANCES -0.65 4.01 SCOR SE -2.58 17.83
COFINIMMO -1.43 7.86 SOFINA -0.86 5.01
COMMERZBANK (XET) -0.92 6.31 UBI BANCA -0.86 7.05
CIE.NALE.A PTF. -0.35 3.20 UNIBAIL-RODAMCO -0.78 3.54
CORIO -0.84 4.47 UNICREDIT -0.45 7.71
CREDIT AGRICOLE -0.66 4.17 VIENNA INSURANCE GROUP A -0.66 13.37
CREDITO VALTELLINES 0.16 5.09 WENDEL -0.98 4.58
CRITERIA CAIXACORP -0.73 4.05 WERELDHAVE -0.19 2.69
DELTA LLOYD GROUP -0.32 1.70

The sample covers the period between January 1992 and June 2010. But the length
of time series differs for each financial institution. The longest time series contains 488
observations and the shortest one has 10 observations. We modified our model to adapt to
this structure. We assume the time-varying equicorrelation matrix is driven by one common
factor that follows the GAS process. The correlation between two institutions starts to load

this dynamic factor once the equity returns become available for both names. So the size of
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the correlation matrix is also changing over time and reaches 73 at the maximum. There are
two approaches to compute the stability measure for this large dimensional dataset. One is
the simulation method proposed in Section 5.1. The drawback is that it takes a long time
to generate enough simulations for all possible stressed scenarios. The alternative way is to
use the law of large numbers (LLN) rule to approximate the probability, as in Section 4.
This approach is numerically easier and still sensible if the main purpose of the study is a
joint risk analysis as demonstrated in the previous subsection.

We assume our 73 institutions form a homogenous portfolio. That means all the institu-
tions have the same skewness and kurtosis coefficients v and v in the multivariate dynamic
distribution for their equity returns. With the volatilities estimated from marginal GAS-GH
skewed-t model, we standardize the equity returns and focus on the modeling of dynamic
correlations. A multivariate GHST distribution is estimated with the equicorrelation re-
striction. The parameter estimation results are shown in Table 4. The correlation coefficient
plotted in Figure 5 hovers around 0.3 over time. Compared with a rolling window corre-
lation series (the window size is 12), the GAS equicorrelation is more persistent over time.

But the means of these two correlation series are similar.

Table 4: Estimation Results Part 11

The parameter estimates in the GAS-GHST Equicorrelation model. These models are
estimated with the filtered returns data. The sample covers the period between January
1970 and June 2010.

GAS Equicorrelation Model

A B w v Log-lik

Parameter 0.239 0.897 -1.214 -0.034 -9502.36
Standard Error (0.181) (0.124) (0.040) (0.010)

We compute the financial risk measures analytically given the multivariate GHST model
and the probability of default from the expected default frequency (EDF) of Moody’s KMV.
We numerically evaluate the integral (44) to compute the Banking Stability Measure, defined
as the probability of more than 10% financial institutions defaulting. The risk measure is

plotted in Figure 5. From the figure, the LLN result for the default probability does not
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Figure 5: The Banking Stability Measures in whole sample

The Banking Stability Measure defined as the probability of more than 10% firms defaulting
under the Law of Large Numbers approximation result. The upper-right panel show the

dynamic correlation estimated in the GAS-Equicorrelation model.

And the bottom-left

panel plots the average of pairwise rolling window correlation coefficients. As a comparison,
the bottom-right panel shows the two correlation estimates jointly.
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Figure 6: The Banking Stability Measure and Systemic Risk Measure

The Banking Stability Measure (BSM) and Systemic Risk Measure (SRM) under the LLN
approximation from the GAS-GHST Equicorrelation model. The BSM indicator is defined
as the probability of more than 10% firms defaulting at time ¢. The SRM indicator is the
average of the default probability of more than seven other firms default conditional on firm

1 defaulting.
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move too much before 2008. But it appears that the period of 2008-2010 is quite special: the
failure probability increases to more than five times the historical mean. We also compute the
same measure with the simulation method. The approximated risk indicator is the same as
the simulated one. So we did not include that in the graph. We plot the LLN approximated
risk indicators, the Banking Stability Measure and the Systemic Risk Measure in Figure 6.
From the graphs, we see the large influence of the recent financial crisis, which drives up the
two risk measures in that period. Note that the systemic risk indicator shoots up to 0.60

around the failure of Lehman Brothers.
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6 Conclusion

In this paper, we develop the dynamic GHST model with GAS-Equicorrelation or block GAS-
Equicorrelation structure. These models are applicable to large dimensional problems. We
also propose two risk measures with a large panel of multiple European financial institutions.
The Banking Stability measure we developed indicates the joint default risk in the system.
The Systemic Risk Measure takes the average of conditional default probabilities to test the
interconnectedness of the financial system. The full dynamic multivariate model with the GH
skew-t distribution is used to simulate the possible distress scenarios for the banks. Based on
the Monte Carlo simulation, we can analyze the joint and conditional credit risk in individual
financial institutions. Another risk measuring model originates from the conditional Law of
Large Numbers approximation method. With the application of a Dynamic Equicorrelation
model in a large system of financial firms, the approximated risk indicator provides a good
measure of credit risks for an unbalanced large panel.

We are currently studying the explanatory power of some commonly used economic
variables (VSTOXX index, Euribor-EONIA spread and European stock market index) to
explain systemic correlation dynamics. By introducing these new variables in our dynamic
system, the correlation becomes less persistent compared to the pure GAS dynamic model.
The residual GAS factor decreases due to the explanatory power of the extra economic
variables. It appears that we still miss one or a few more factors to explain the variation
in correlation dynamics. Moreover, we might miss a few important firm specific variables,
such as the leverage ratio. The current model also enable us to measure the systemic risk
contribution of each bank by looking at the conditional probability in the multivariate GH

skewed-t distribution. We leave this for future research.
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Appendix: the dynamic GAS-Equicorrelation model

The GH skewed-t distribution is a subclass of the GH distribution family which preserves
much of the flexibility of GH distribution, but with less parameters. With the observed stock

return for bank ¢ defined as y;; following the GH skewed-t distribution, the model is

v ~ p(Snv,7), (A1)
S, = L(TT)L,, (A2)
Y = LL,=R,, (A3)

where v collects the skewness parameters and the matrix 7T satisfies the condition

202
ok p— 2 Ad
T = oS oo = (A4)
The deco-Dynamic-GH model defines the correlation matrix as
, -1
Ry = (1= p)InpllnCy N, pr € (1), (A5)

N-—-1

where ¥; = R; is the dynamic conditional correlation matrix we are interested in and ¢y €
RY is a vector of ones. In this model, we define L; as a symmetric matrix. Further, we

parameterize p; as a GAS model

pr = Y(fr), (A6)
firn = w+ As;+ Bf,. (A7)

We also define the scale matrix as f]t = L~tL~t/. The variable T links these two matrices such

that f/t = LtT

The innovation term s; is the scaled observation density score as in Zhang et al. (2011).
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Note that the matrix L, is symmetric.

St — Stvt, (A8)

V. = W,H/vec (wt Yy — Y, — (1 — V52wt> Ewyz) , (A9)

S = {\IJQ(I @ LYY [9G — vec(I)vee(I)]1® ﬂ;l)@t}_ : (A10)

He = (e +Cx)(% @ 50)) (A11)
Ovec(X;)

v, 8—ft’ (A12)

where g = 234 and G is defined as in Creal et al. (2011).

From the derivation, it is clear that we have to take inverses and compute the determi-
nants of matrices in a large dimension. If we have the matrices in blocks or in the form
of the equicorrelation model, we can obtain the inverse and determinant in analytical form
which will help to speed up the computations. To get the matrix L; in an easy-to-operate
form, we have

it = CltIN + bthglN, (A13>

where a; = /1 — p; and by = (\/1 — p; + Np,—+/1 — p;)/N. The condition for the correlation

matrix to be positive definite does not change.

T =cly +dinlly, (A14)

where

e =

s
—
R
|

[\
N~—
)
—
R
|
=~
N~—



So we have

Lt = Z‘/tTil = CLtCIN + (atd + th + thd>€N‘€/]V (A15>
It is straightforward to derive the inverse and determinant as

_ 1 atd =+ th + thd
L 1 — _I _ g 6/ A].6
t a;c N asc(azc + N(ayd + bie + Nbyd)) NN ( )

det(%,) = det(L)? = (a,0)* ™ Y(aye + N(awd + byc + Nbyd))?. (A17)

In the application with the whole sample, it appears that the computation of the scale
matrix and score matrix takes too much time. One reason is the inversion of a large N x N
matrix in equation (A1l). In order to reduce the burden for calculation, we manage to derive

U, analytically, which would speed up the computational speed.

aVGC(Lt) ( dat dCLt dbt dbt ) ’
vV = ——— = —cvec(ly) + (—d+ —c+ —Nd)¥ U , Al1R
af, dpy () (dpt dp; | dp; Jowz J 9 (Jo), - (AL8)
dCLt 1

_ : A19
dps 2v1—py (419)

db, 1 ( N -1 1 )
— = — + . A20
dp 2N \VI—p,+Np, V1—p (A20)

This does help in getting out the correlation simply. The scale matrix S; is the inverse Fisher

information matrix from the symmetric ¢ distribution, as explained in Zhang et al. (2011).
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