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ABSTRACT
The paper presents the Contract Aggregation Framework
(CAF) for the modeling and analysis of data streams repre-
senting arbitrary financial contracts, ranging from privately
negotiated deals to exchange-traded securities. We discuss
the need for a flexible and extensible data model and pro-
vide an exemplar representing trading in corporate equities
and bonds. Using a measure of Market volume, we review
several analytical methods to explore the data. Initial obser-
vations support the benefits of the framework to integrate
and analyze disparate sources of data.

Keywords
Data stream, Market volume, Financial contract, Extensible
model, Financial analytics, Tensor decomposition.

1. INTRODUCTION
Modern financial systems generate complex information flows
ranging from loans to public trading to large-scale capital
movements. Systemic financial analyses and systemic risk
metrics must combine financial data streams. However, even
a seemingly straightforward alignment task, matching corpo-
rate bonds with the equity of the issuer of the bond can result
in unmatched trades. The resulting impact (selection biases)
on statistical analyses is unknown. A more significant exam-
ple is a “lamppost” problem that extrapolates results from
some financial subsector where granular data are available
to another for which only aggregated data exist.

Aggregating over individual financial contracts has impor-
tant implications. For example, the diversification effect im-
plies that portfolio return variance is less than the sum for
the component securities. While the investments literature
has produced a vast wealth of econometric models to study
aggregate portfolio returns, there is paucity of research on
other aggregations, such as systemic metrics.
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In this paper, we present the Contract Aggregation Frame-
work (CAF) for the modeling and analysis of financial data
streams. We build upon fundamental data modeling princi-
ples that were used in developing the relational data model
and the data cube model [14]. The framework is motivated
on the twin facts that data representing financial activity are
available at widely disparate levels of temporal and cross-
sectional aggregation, while empirical analyses are greatly
facilitated by a well chosen standardization of the data.
CAF is designed to capture financial contract data at arbi-
trary levels of granularity. We propose a flexible and exten-
sible data model based on a basic container and operators to
measure financial activity; we demonstrate using a measure
of market volume [12, 13].

We exhibit the usefulness of CAF with an initial analysis of
bond and equity data. This proof of concept demonstrates
the utility of the CAF in integrating financial activity data
from different asset classes, over levels of granularity and
temporal aggregation. In addition, preliminary results from
tensor decomposition allow us to identify tensor factors that
correspond to potential latent patterns of co-trading of in-
dividual equities or bonds.

2. CAF DATA MODEL AND OPERATORS
2.1 Motivation
Data are critical to the functioning of the financial system.
Message standards exist as the primary vehicle for com-
municating decisions, obligations, payments and other facts
and commitments within and between participants. These
standards and the implementation architectures are typi-
cally crafted to meet specific localized requirements. They
are not designed to support system-wide data integration.
Data therefore appear with a wide range of observation fre-
quencies and aggregation levels, and are represented in a
dizzying array of idiosyncratic formats. This lack of struc-
ture presents a serious challenge for important tasks such as
monitoring financial supply chains, systemic risk manage-
ment, and macroprudential supervision.
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One goal of the CAF is consistent methodology for inte-
gration of legacy data across multiple levels of aggregation
and data frequency. This includes relatively broad levels
of aggregation, e.g., consolidated bank holding company fi-
nancial statements [7], infrequent observation, e.g., annual



Table 1: Statistics for Bond and Equity Data

Start Date July 1st, 2013
End Date September 30th, 2013

Unique Equities 6795
Unique Bonds 20411

Industry Groups 24
Count of Equity Trades 448163063
Count of Bond Trades 2698330

Form PF reports to the Securities and Exchange Commis-
sion [15]), and time series transactional data sources that
capture individual trades or order flow. While data aggre-
gation has always been a problem for market participants,
the increasing pace of financial activity combines with a new-
found emphasis on system-wide stability to make large-scale
information integration a special challenge.

2.2 CAF Principles
• The basic building block, a container, is a multidimen-

sional representation in which each cell corresponds to
transactions in one (or more) financial contracts.

• CAF must be extensible with respect to additional di-
mensions. This supports the later integration of data
from multiple streams.

• Mapping rules must be defined to populate the con-
tainer. The mapping must be disjoint and provide
complete coverage (where possible) of all elements from
the event or data stream(s).

• CAF must accommodate a range of granularity, in-
cluding along the temporal dimensions. It must sup-
port aggregation over multiple elements, as well as the
ability to reconfigure or partition relevant segments of
the basic container. Examples are used to illustrate
these principles.

2.3 Exemplar and Dataset
Our initial exemplar represents data on trading in equities
from the Center for Research in Security Prices (CRSP) and
data on trading in corporate bonds from the Trade Report-
ing and Compliance Engine (TRACE) service of the The Fi-
nancial Industry Regulation Authority (FINRA). This sim-
ple example illustrates how CAF can integrate multiple data
streams, across levels of granularity and temporal aggrega-
tion, and create interesting subsets.

- Companies.

- SUBSET listed at NYSE, Amex, NASDAQ, or

NYSE Arca (CRSP universe).

- SUBSET with equities trading activity.

- SUBSET with outstanding bonds

(TRACE universe).

- SUBSET with bond trading activity.

GROUP BY NAICS code.

FINRA, an SEC-registered self-regulatory organization to
regulate the securities industry, provides real-time informa-
tion on over-the-counter (OTC) trading in U.S. corporate

bonds through TRACE. TRACE covers all OTC activity
for investment grade, high yield, and convertible debt cor-
porate bonds—over 99% of the total U.S. corporate bond
market activity. CRSP, founded in 1960 by the University
of Chicago Booth School of Business, provides a comprehen-
sive database of historical stock market data, dating to 1926.
This includes end-of-day data on all common stocks listed
on the NYSE, Amex, and NASDAQ and features a number
of different fields including NAICS industry code, exchange,
price, closing bid and ask, share volume, and number of
trades. TRACE and CRSP is available through the Whar-
ton Research Data Services (WRDS).

The summary statistics of the data used to populate the
prototype CAF container is in Table 1.1 We integrate these
two data streams by first aggregating bond activity to daily
totals. We then match bond and equity data according to
the NAICS code for each company.

2.4 Market Size Metrics
A fundamental task for systemic analysis is to summarize
the “size” of financial activity and risk exposures on a com-
parable scale across markets and institutions. A key intent
(among several) of the Dodd-Frank Act, for example, is “to
end too big to fail” [16]. Researchers have approached the
concept of financial size in many ways. Lo and Wang [13] list
a dozen metrics for trading volume in the secondary market
for corporate equities alone.

We define an individual financial contract as an atomic unit.
Size measures are then functions (simple or weighted aggre-
gations) over some relevant attributes of a singular contract
or set of contracts contained in a ContractSet.2 Size may
be computed with respect to a point-in-time snapshot of a
portfolio inventory, or over an interval of time, e.g., portfolio
turnover.

Size measures will typically be user-defined, and CAF must
support a primitive set of operators that can be used to de-
fine customized size measures. For our initial analysis, we
consider two basic measures of size, namely notional value,
recorded in the legal terms of the contract and market value,
the price at which a contract changes hands. Financial
contracts typically have an explicitly defined measure, e.g.,
principal value for debt instruments, par value for equities,
and notional value for derivatives. We group these measures
under the label notional value. In trading contexts, a price
is negotiated whenever a contract changes hands, reflecting
its current economic value to the participants. In cases of
infrequent trading, participants typically use a formula or
algorithm to estimate this unobserved price. We refer to
both a transaction price or an estimated price as the market
value of a contract.3

Size measures may be parameterized as follows:

1The daily number of trades is not reported for about 61%
of equities in CRSP, so the actual number is higher.
2Aggregations of risk exposures will typically be non-linear,
for example due to diversification effects [3, 4]. In certain
cases, this may constrain the applicability of linear tensor
techniques described below.
3Accounting standards typically use the term fair value [11].
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• A singleton contract or a set, ContractSet.

• A temporal Interval. If the start and stop times of
an interval are identical, then we have a point-in-time
snapshot.

• A SizingRule to determine the size (volume or value)
of the contracts occurring in the ContractSet.

Typical examples of size measures are as follows:

• TradeCount: Cardinality of the trades executed against
the contracts in the ContractSet.

• ValueNotional: Sum of notional values extracted from
contract-level attributes in the ContractSet.

• ValueMarket: Sum of market values extracted from
contract-level attributes in the ContractSet.

2.5 Extensibility of the Framework
A key motivation of CAF is extensibility to additional sources
and dimensions; we briefly discuss some extensions:

• Ownership and other relationships among the institu-
tions that are counterparties to contracts.

• Contracts that reference other contracts, e.g., an eq-
uity call option is a contract that references an equity.

• Contracts that are composed of other contracts, e.g.,
mortgage-backed securities.

3. PRELIMINARY OBSERVATIONS ON EQ-
UITY AND BOND VOLUMES

As a proof of concept, we consider (i) daily dollar-weighted
market volume, defined as price per share (or bond) times
number of units traded, aggregated to daily totals, and fur-
ther aggregated by industry category according to the first
two digits of the 6 digit NAICS code. We use the NAICS
code associated with the corporate equity. Forty four group-
ings (22 each for bonds and equities) remained after filtering
out sparsely populated categories; due to space limitations
we do not provide the 22 NAICS code labels.4 We also use
(ii) the proportion of market volume for that NAICS code
and (iii) market volume adjusted with the NYSE daily vol-
ume.

3.1 Key Observations from the Analyses
We note that due to the very limited sample period of data
collection of 3 months, our analysis merely demonstrates the
feasibility and utility of CAF; we do not attempt to produce
conclusive econometric results.

• There is a strong common component to trading of
all financial instruments; this leads to positive cor-
relations in trading volume between all industries for
bonds and equities.

4A table of these three-letter codes is available upon request.

• Correlations within the same asset class of different in-
dustries were positive. Typically, bond trading across
a pair of industries better, compared to bond trading
and equity trading in the same industry.

• Adjustments to compute the proportion of market vol-
ume, or normalize with respect to the NYSE daily
volume, reduced the correlation across industry pairs
within the same asset class. However, pairs with high
(or low) correlation retained their high (low) corre-
lation. These adjustments did not affect correlation
across differing asset classes. Normalizing the market
volume using the previous day’s S&P return had no
impact. Normalizing on the current day’s S&P return
had noticeable effects on the finance and insurance in-
dustry (FIN) and the construction industry (CON).

• Autoregressive models showed positive autoregressive
coefficients for market trading volume for each indus-
try and asset class using AR(1) models. They were
not always statistically significant and they showed a
large range of values. Equity volumes were less volatile
from day to day and were easier to predict. The AR
coefficient of an industry’s bond trading volume was
not indicative of how high its AR coefficient for equity
trading would be and vice versa.

3.2 Methods and Results
An industry-by-industry correlation matrix (44x44, bonds
and equities), shows a positive correlation in almost all cells.
There is naturally a strong common component to market-
wide trading volume underlying these mostly positive corre-
lations. Average industry correlations within the bond mar-
ket were slightly higher than in the equity market. While
still positive, average bond-equity correlations were signif-
icantly lower. Correlation of bond trading volume with
industry-matched equity trading volume were higher than
the overall average bond-equity cell, but lower than the av-
erage bond-bond or equity-equity cell. In other words, bond
trading in a given industry correlates better with bond trad-
ing in another industry than equity trading in the same in-
dustry. This suggests that trading volume is driven less by
firm-specific news, which should affect bonds and equities of
a firm simultaneously, and more by factors, such as portfolio
rebalancing, specific to the asset class (bond or equity).

It is instructive to consider the correlation outliers. For bond
volumes, industries 21:OGM, 33:MCH, and 52:FIN are the
most correlated with the other bond sectors. These are all
capital-intensive industries, so we may be seeing the effect
of the business cycle playing out in volumes; this warrants
deeper investigation. Bond volumes for industries 11:AGF
and 49:WAR show low correlations with other industries’
bond trading, and their equity trading showed low correla-
tions with other industries’ equity trading. Bond trading in
industry 56:WST was the least correlated with other sec-
tors’ bond volume. On the equities side, industry 45:REC
correlated poorly with other industries’ equity trading.

Figure 1 plots the eight most highly correlated bond indus-
tries by aggregated daily trading volume using a log scale
on the y-axis, i.e., the eight industries involved in the seven
highest correlation pairs. Note that many industries are in-
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Figure 1: Top Correlated Bonds by Daily Volume
(log scale) – 21:OGM; 22:UTL; 31:EDB; 32:CHM;
33:MCH; 45:REC; 52:FIN; 55:MGT.

cluded in multiple pairs. The pairs are (with a “B” prefix to
indicate bonds):

(B52:FIN-B21:OGM)

(B33:MCH-B22:UTL)

(B52:FIN-B31:EDB)

(B33:MCH-B32:CHM)

(B52:FIN-B33:MCH)

(B33:MCH-B45:REC)

(B52:FIN-B55:MGT)

Again here we see the dominant presence of sectors 21:OGM,
33:MCH, and 52:FIN as highly correlated.

Similarly, Figure 2 plots the eight most highly correlated
equity industries by aggregated daily trading volume using a
log scale on the y-axis. The pairs are (“E” prefix to indicate
equities):

(E71:ENT-E31:EDB)

(E42:WHL-E32:CHM)

(E42:WHL-E33:MCH)

(E32:CHM-E54:PRO)

(E54:PRO-E56:WST)

(E56:WST-E72:TRV)

Notably, we see a quite different subset of the industry sec-
tors dominating the correlations. Sector 56:WST, which is
the least correlated among the bond sectors, even appears
twice among the high-correlation equity pairs.

As a simple control for general market activity, we regressed
the daily trading volume in each industry for both bonds and

Figure 2: Top Correlated Equities by Daily Volume
(log scale) – 31:EDB; 32:CHM; 33:MCH; 42:WHL;
54:PRO; 56:WST; 71:ENT; 72:TRV.

equities against the NYSE trading volume, percent change
in the 2-year U.S. Treasury yield, and percent change in
the 10-year Treasury yield. We then recalculated the cor-
relation matrix for the regression residuals, which we call
“adjusted volume.” Since NYSE trading volume is strongly
correlated to aggregate equity trading volume, this filtering
removed most of the general market-related trading activity
for equity categories. The equity-equity correlations aver-
aged across all industry sectors dropped when considering
the adjusted volume. 51 of the (22*21/2=231) equity-equity
correlations showed a fairly large change in absolute value
and 58 pairs change sign. The impact of adjusted volume
was much weaker for bonds.

Interestingly, when considering bond-equity adjusted vol-
ume correlation, the average correlation shows an increase.
Volume tends to cluster in generally high-volume days for
bonds, and separate high-volume days for equities. This fact
tends to reduce the average correlations in raw bond-equity
volumes, because volume variance is tied less to industry
specific news and more to overall activity in bond or equity
markets. Filtering out these general factors partially re-
moves this effect, exposing the industry-level patterns in the
residuals. While the impact of filtering was sharply different
for average equity-equity versus bond-bond correlations, the
same industry pairs with the lowest raw-volume correlations
also had the lowest adjusted-volume correlations.

Contemporaneous industry-matched bond-equity correlations
were highest (exceeding 0.400) for the following industries:
23:CON, 32:CHM, 33:MCH, 48:TRN, 56:WST, 62:HLT, and
71:ENT. At the other extreme, industry-matched correla-
tions were lowest (below 0.060) for the inventory-intensive
industries: 11:AGF, 21:OGM, and 49:WAR.
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Based on the assumption that large changes in market vol-
ume in one day may lead to increased trading activity in the
following day, we tested the hypotheses that the previous
day’s S&P return might be a good feature in the regression
to create adjusted volume This hypotheses did not hold; the
effect was negligible for all industries. A regression based on
the current day’s S&P return showed that there was a larger
effect for the finance and insurance (FIN) and construction
(CON) industries.

Finally, we rerun the correlations using the proportion of
daily bond volume within each industry, and similarly for
equities. This pushes the average correlation coefficients
close to zero and restricts any particular industry from cor-
relating strongly with all the others. On the other hand, it
emphasizes those industry pairs that tend to trade jointly,
after conditioning over all other factors. Bonds from in-
dustries B49:WAR and B53:REL showed a high correlation.
Similarly, equities from industries E32:CHM and E62:HTL
showed high correlation in proportionate volume.

We also examined correlations versus lagged volume. There
were strong correlations along the diagonals, indicating ac-
tivity persistence, meaning that volume in a particular in-
dustry on one day is predictive of its trading volume the fol-
lowing day. To capture this more formally, we modelled log
volume using three different autoregressive moving-average
(ARMA) time series models.[5]. We tried three models:
AR(1), MA(1), and ARMA(1,1). The AR(1) models ap-
peared to perform well overall.

Equity volumes were more consistent day to day and also
easier to predict. Equity AR(1) coefficients ranged from
0.160 for E51:INF to 0.646 for industry E48:TRN. All were
positive and most were statistically significant. For bonds,
they ranged from 0.084 for industry E54:PRO (Professional,
scientific, and technical services) to 0.679 for industry E51:INF
Again, all were positive and most were statistically signifi-
cant. It is interesting that the information sector had the
highest autoregressive coefficient for bonds, but the lowest
for equities.

These results are preliminary, and there are many obvious
ways to strengthen the statistical analysis. Nonetheless,
even this simple and coarse correlation study reveals some
of the possibilities for systematic integration of consistent fi-
nancial activity measures to surface intriguing patterns and
promising questions for further research. We expect the
power of this method to improve as we continue to build
out both the data and tooling in the CAF.

.

4. TENSOR DECOMPOSITION
Given the multi-dimensional representation associated with
the basic financial container, tensor decomposition appears
to be a relevant analytical method that can be applied to
identify potential latent factors, e.g., the co-trading of groups
of equities or groups of bonds. Tensor factors will clus-
ter individual elements, e.g., corporate equities or corporate
bonds, across one or more industry sectors, in some specfic
time intervals. We note that this is preliminary analysis to
show the potential of this method.

Consider a trade against a bond CorpBond or an equity

CorpEquity associated with a company CorpEntity in an in-
dustry sector IndustrySector. Let DataTime represent the
time of the trade, CorpEqTrade or CorpBondTrade. We can
construct the following tensors to capture this information
where each element of the tensor will represent a market
size metric. We note that the third tensor combines the
data from the first two tensors and that this is only one
among many alternate representations:

• (DateTime, CorpEntity, IndustrySector, CorpEquity,
CorpEqTrade)

• (DateTime, CorpEntity, IndustrySector, CorpBond, Cor
BondTrade)

• (DateTime, CorpEntity, IndustrySector, ( CorpBond |
CorpEquity ), ( CorpEqTrade | CorpBondTrade ) ).

Among the many methods for tensor based analytics [6],
we consider a class of closely related constructions, known
collectively as CP decomposition, named after the two most
popular and general variants, CANDECOMP and PARAFAC
[10]. Such decompositions represent a tensor as the sum of
the N-fold outer products of Rank-1 tensors, where N is the
dimension of the original tensor indices. Figures 3 and 4
illustrate an example of the CP decomposition to produce R
tensor factors, where each factor is represented by 3 Rank-1
tensors along the I, J and K indices of the original 3 dimen-
sional tensor.

Figure 5 illustrates the Top 3 elements of 3 Rank-1 tensors,
DateTime, CorpEquity and IndustrySector. There are 3 eq-
uities, SPY, BAC and EEM that occur in this factor and all are
in the NAICS section 52 (Finance, Insurance). Figure 6
and 7 plot the equity prices and trading volume reported
by the site Yahoo! Finance for SPY and EEM in a correspond-
ing time interval. It is notable that there appears to be a
strong correlation of activity around these two equities on
these dates.

Figure 3: Example of CP Decomposition

Figure 4: R Components from the CP Decomposi-
tion

p-
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Figure 5: Tensor Factor Corresponding to Equity
Trades

Figure 6: Equity Trading Price and Volume for SPY

Similarly, we identify a tensor factor comprising 4 corporate
bonds. The tensor factor is summarized in Table 4. Again,
using data from Yahoo! Finance, we observe a high corre-
lation of activity for these four bonds, in the corresponding
time interval.

5. RELATED WORK
Data cubes [14] represent data as measures or dimensions;
they are similar to a tensor representation of an array that
projects data from the database. The typical multidimen-
sional analysis is to compute aggregated statistics, e.g., How
many equities have trading activity that exceeds X during a
time interval, grouped by industry sector?

The scale of financial activity is important in many con-
texts. Quantity transacted, for example, is a fundamental
input to the most basic market phenomenon, the equilibra-
tion of supply and demand; [12, 9]. Aggregated volume and
market turnover (volume divided by shares outstanding) are
common heuristic measures of market liquidity; [2]. How-
ever, despite the significance of volume, it has not received

Table 2: A tensor factor comprising 4 Verizon (VZ)
corporate bonds with different maturity dates.

Date Normalized weight for Date
20130912 0.08975
20130911 0.06533
20130913 0.04847
20130918 0.04743

Bond name Normalized weight for Bond name
VZ 43 0.21082
VZ 23 0.19129

VZ 18C 0.10806
VZ 33 0.10754

Figure 7: Equity Trading Price and Volume for EEM

nearly the level of research attention as price, particularly
in the asset pricing literature; [13]. This is due in part to
the fact that trading volumes are not always reported with
the same high-frequency timeliness as market prices.

The scale of financial activity also matters at the systemic
level. For example, it factors in discussions of aggregate im-
balances [1], the too-big-to-fail problem [16], and the growth
of shadow banking [8]. The CAF helps address the general
issue of scale by providing a unifying framework for measur-
ing and managing a very general class of size metrics across
a very broad range of financial activity.

6. CONCLUSIONS AND FUTURE WORK
The Contract Aggregation Framework can model a wide
range of financial activity measured at disparate levels of
aggregation. We provide a proof of concept, applying a pre-
liminary version of the CAF to bond and equity volume data.
Our preliminary results demonstrate both the feasibility of
data integration through the CAF, and its ability to iden-
tify interesting patterns and research questions. We further
apply tensor decompositions to the data, to identify poten-
tial latent patterns of co-trading of individual equities or
bonds. Future work includes the following: (a) Developing
the CAF proof of concept into a more robust implementa-
tion. (b) Refining both the tensor and volume analytics. (c)
Adding visualizations. (c) Populating the container with a
much broader range of financial data streams.
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