
15-04 | March 26, 2015
Revised March 27, 2017

Contract as Automaton: The Computational
Representation of Financial Agreements

Mark D. Flood
Office of Financial Research
mark.flood@ofr.treasury.gov

Oliver R. Goodenough
Office of Financial Research and Vermont Law School
oliver.goodenough@ofr.treasury.gov
ogoodenough@vermontlaw.edu

The Office of Financial Research (OFR) Working Paper Series allows members of the OFR staff and
their coauthors to disseminate preliminary research findings in a format intended to generate
discussion and critical comments. Papers in the OFR Working Paper Series are works in progress and
subject to revision.

Views and opinions expressed are those of the authors and do not necessarily represent official
positions or policy of the OFR or U.S. Department of the Treasury. Comments and suggestions for
improvements are welcome and should be directed to the authors. OFR working papers may be
quoted without additional permission.

mailto:mark.flood@ofr.treasury.gov
mailto:oliver.goodenough@ofr.treasury.gov
mailto:ogoodenough@vermontlaw.edu

Contract as Automaton:

The Computational Representation of Financial Agreements

By Mark D. Flood † and Oliver R. Goodenough‡

 March 27, 2017

JEL codes: D86, K12, C63

Keywords: Financial contracting, state-transition system, deterministic finite automaton, theory of
computation, contractual complexity

Key Messages:
• Financial contracts are structured internally as state-transition systems
• Discrete finite automata (DFA) are an adequate formalism to represent this structure as finite sets

of states, events, and transitions
• DFA representations readily allow for testing of contractual completeness and complexity

Acknowledgments
The authors thank Dan Katz, Jeanne Eicks, Matt Reed, Greg Feldberg, Primavera de Filippi, David
Blaszkowsky, Sean Byrne, Harold Boley, Sanjoy Mitter, Andrew Lo, and Lynn Stout. Other helpful
comments and background discussions on computation law came from research seminar participants at
Cambridge University, Dartmouth College, George Mason University, Harvard University’s Berkman Center
for Internet and Society, Massachusetts Institute of Technology, Office of Financial Research, Ewing
Marion Kauffman Foundation, Gruter Institute, Stanford CodeX Center for Legal Informatics, IBM Research
at Almaden, Institute for Pure and Applied Mathematics at the University of California at Los Angeles,
Vermont Law School, and American Association of Law Schools’ annual meeting. We also thank John
Donnelly, Jaryn Fields, Catherine Bourque, and Jacinta Ritchie for able support on this and related
research. All remaining errors are the responsibility of the authors alone.

† Office of Financial Research, mark.flood@ofr.treasury.gov
‡ Vermont Law School and Office of Financial Research, oliver.goodenough@ofr.treasury.gov or ogoodenough@vermontlaw.edu

mailto:mark.flood@ofr.treasury.gov
mailto:oliver.goodenough@ofr.treasury.gov
mailto:ogoodenough@vermontlaw.edu

Contract as Automaton:

The Computational Representation of Financial Agreements

Abstract

We show that the fundamental legal structure of a well-written financial contract follows a state-transition
logic that can be formalized mathematically as a finite-state machine (specifically, a deterministic finite
automaton or DFA). The automaton defines the states that a financial relationship can be in, such as
“default,” “delinquency,” “performing,” etc., and it defines an “alphabet” of events that can trigger state
transitions, such as “payment arrives,” “due date passes,” etc. The core of a contract describes the rules by
which different sequences of events trigger particular sequences of state transitions in the relationship
between the counterparties. By conceptualizing and representing the legal structure of a contract in this
way, we expose it to a range of powerful tools and results from the theory of computation. These allow, for
example, automated reasoning to determine whether a contract is internally coherent and whether it is
complete relative to a particular event alphabet. We illustrate the process by representing a simple loan
agreement as an automaton.

I. Introduction

A crucial step in understanding financial networks is comprehending the edges that link vertices together.
For many financial networks, these edges correspond to financial contracts in the real world, implying a
need for a concise, structured representation of these legal agreements that define formally the legally
enforceable relationships connecting financial actors. In this paper, we propose a general framework for
such a formal representation, grounded in both legal and computational principles. In addition to defining
the legally enforceable relationships that connect financial actors, contracts have increased in importance
over the past half-century. An increasing proportion of overall financial activity has migrated to arms-
length contracts, exemplified by the growth in derivatives markets, securitization, and high-frequency
trading; see Greenwood and Scharfstein (2013), Clark (2011), and Flood, Mendelowitz, and Nichols (2013).
This move away from the traditional intermediation provided by banks presents researchers and
policymakers with new challenges in the form of liquidity surprises and fire sales, and new opportunities in
the form of detailed datasets describing the networked interactions.

A well-written financial contract is a finite-state machine in a formal sense. We demonstrate this
proposition by representing a simple fixed-rate loan agreement using a standard computational
formalism.1 The structure of a contract employs legalese to encode a finite set of states that can describe
the relationship between the counterparties at a given point in the life of the contract. The contract also
encodes transition rules for shifting the relationship from one state to another based on the realization of
certain predefined events, such as performance by the counterparties themselves or the occurrence of
particular contingencies outside their control.

By formalizing financial agreements according to rules of computability, we expose the contracts to a
wealth of powerful computational machinery. This machinery includes programmatic testing for (legal)
completeness and (computational) complexity, and tools for simplification, visualization, and even the
automated generation of legalese. Conversely, forcing a contract to adhere to the prerequisites of the
state machine model — especially the finiteness of states and events, and the independence of states
from one another — imposes valuable normative discipline for how contracts should be crafted.

Our approach follows Allen (1957) and von der Lieth Gardner (1987), who similarly represent legal
constructions with symbolic formalisms. Allen (1957) applies symbolic logic to legal documents generally.
Although symbolic logic is more expressive and more general than automata, it is also a lower-level
abstraction and inefficient for capturing the legal semantics of financial contracts. Von der Lieth Gardner
(1987) considers computational representations of legal knowledge and reasoning generally. She considers
an ambitious range of formalisms, including the multiple representation system (MRS) of Genesereth,
Greiner, and Smith (1981), and augmented-transition networks once recommended for natural language
parsing.

1 There are many excellent textbook treatments of the theory of computation and finite state machines, including Sipser (2006),
Kozen (1997), and Rosenberg (2010). For an overview, see the lectures by Simonson (2013).

Closer to implementation, Grosof and Poon (2004) prototype an e-contract system called SweetDeal,
based on a RuleML encoding of the knowledge representation, and a description logic representation of
process ontologies. This is a relatively early example of the growing literature on computational
contracting; see Surden (2012) for an overview from a legal perspective. Brammertz, et al. (2009) develop
a structured formalism for financial contracts that focuses on a description of common intertemporal cash
flow patterns to support securities valuation and risk analysis. This is the foundation for the Project ACTUS
(2015) implementation pilot. Another recent pilot is the Financial Industry Business Ontology (FIBO), which
proposes a formal, standardized model of legal concepts in the finance; see OMG (2014). Still closer to
implementation, the automation of accounting, valuation, risk analysis, and trade execution is a practical
necessity in the daily operations of trading firms; see Brose, et al. (2014a, 2014b).

Any representation has strengths and emphases. Our formalism is agnostic about the details of
implementation, but adheres closely to the fundamental structure and legal semantics of the financial
agreement. By making this initial transition from traditional legalese to a computational representation as
accurate and lossless as possible, subsequent translations to implementation representations should be
easier and more useful. By specifying this foundational representation as a deterministic finite automaton
(DFA), we expose the legal structure to a wealth of computational theory.

II. Legal Structure of Financial Contracts

Contracts are central to the economic life of markets. They define detailed relationships between
counterparties, itemizing what each promises to do, or not do, under a pre-specified list of key
contingencies.

It is convenient (but not necessary) to think of a financial contract as combining a statement of the desired
sequence of events and actions with statements of the commitments and legal remedies to be pursued if
circumstances should go awry. We refer to the desired execution sequence under a contractual
relationship as the “happy path.”2 In our example of a simple loan agreement in Table 1, the sections
denoted “Counterparties” and “Basic obligations” compose the happy path. The sections denoted “Default
provisions” and “Enforcement” cover the various unhappy paths that the relationship might follow. Taken
together, the elements of the loan in Table 1 can create significant complexity by linking a number of
variables and factors together in chains of events and consequences, and by delineating varied outcomes
depending on the factors involved. For instance, an agreement might make a distinction between, and
treat differently, (i) a default under an obligation to make a payment and (ii) a default under a covenant
(such as a promise to provide a particular financial report), each playing out differently across the logic of
the contract. Complexity almost always increases when a transaction leaves the happy path of expected

2 The notion of the “happy path” comes from the world of software testing, where it refers to the primary software execution path
that provides the core required functionality and does not provide for error handling or other exceptional events. In other words,
the happy path is the sequence executed when everything goes as expected (Software Engineering Institute, 2009).

and timely fulfillment and enters the world of default, penalty, and enforcement, a world we will discuss at
greater length in Section V.

Because a contractual relationship typically envisions a single happy path and many unhappy paths, much
of the effort in drafting agreements must address the latter. In contracting, as in software development,
planning for exceptional situations and component failures are crucial for a robust process. A powerful
characteristic of the deterministic finite automata that we describe later in this paper is that DFAs
rigorously enforce a simplicity requirement that the history of a process, such as the evolution of a
contractual relationship, must be fully captured by the specification of its current state. We argue that
well-drafted financial contracts should and do adhere to this rule. This discipline helps keep the overall
complexity of the system within manageable bounds.

III. A Computational Representation of a Financial Contract

Using an example, we demonstrate in this section that a well-designed financial contract is a state
transition system. Moreover, we can structure such a financial contract as a particular sort of state
transition system, namely a deterministic finite automaton.

The deterministic finite automaton or DFA structure of a financial contract is not metaphorical. A DFA is a
mathematical formalism with precise requirements, which a contract may or may not meet. We argue that
a well-designed financial contract satisfies these requirements, and thus gains access to the substantial
body of formal results from the theory of computation. Conversely, a given financial contract observed in
the field may fall short of the requirements of the DFA formalism. Such deviations from the ideal represent
design compromises, and the distance between the actual and the ideal in any given case might be a
measure of the quality of the legal craftsmanship involved.

The subsequent discussion of an example of a streamlined loan agreement simplifies two things. First, our
example is condensed to avoid a surfeit of contractual provisions beyond the basics needed to illustrate
our core argument and demonstrate the feasibility of the approach. Fully formed, practical examples of
financial transactions, such as the swaps master agreement (ISDA, 2002) or the foreign exchange master
agreement (Foreign Exchange Committee, 1997) are crowded with particulars that compound the
modeling burden while distracting from the central concepts. We leave these more ambitious mappings
for future research.

Second, and more fundamentally, we have chosen the most basic computational formalism — the
deterministic finite automaton or DFA — to represent the structure of our contract. Computation theory
has a set of different computation models, appropriate for different sorts of tasks, such as representing
system behavior or parsing source code that conforms to a specific grammar. These models differ in their
expressiveness, meaning the degree of intricacy of the structure that they can capture. The fact that the
DFA is sufficiently expressive to represent our streamlined contract suggests that contract law and drafting
have evolved to embody computational logic at this relatively simple level of sophistication for managing

Table 1: A Streamlined Loan Agreement

Agreement

This loan agreement dated June 1, 2014, by and between Lender Bank Co. (“Lender”) and
Borrower Corp. (Borrower), will set out the terms under which Lender will extend credit in the
principal amount of $1,000 to Borrower with an un-compounded interest rate of 5% per annum,
included in the specified payment structure.

1. The Loan
At the request of Borrower, to be given on June 1, 2014, Lender will advance $1,000 to Borrower
no later than June 2, 2014. If Borrower does not make such a request, this agreement will
terminate.

2. Repayment
Subject to the other terms of this agreement, Borrower will repay the loan in the following
payments:

(a) Payment 1, due June 1, 2015, in the amount of $550, representing a payment of $500 as
half of the principal and interest in the amount of $50.

(b) Payment 2, due June 1, 2016, in the amount of $525, representing a payment of $500 as
the remaining half of the principal and interest in the amount of $25.

3. Representations and Warranties
The Borrower represents and warrants, at the execution of this agreement, at the request for
the advance of funds and at all times any repayment amount shall be outstanding, the
Borrower’s assets shall exceed its liabilities as determined under an application of the FASB rules
of accounting.

4. Covenants:
The Borrower covenants that at the execution of this agreement, at the request for the advance
of funds and at all times any repayment amount shall be outstanding it will make timely payment
of all state and federal taxes as and when due.

5. Events of Default
The Borrower will be in default under this agreement upon the occurrence of any of the
following events or conditions, provided they shall remain uncured within a period of two days
after notice is given to Borrower by Lender of their occurrence (such an uncured event an “Event
of Default”):

(a) Borrower shall fail to make timely payment of any amount due to Lender hereunder;

(b) Any of the representation or warranties of Borrower under this agreement shall prove
untrue;

(c) Borrower shall fail to perform any of its covenants under this agreement;

(d) Borrower shall file for bankruptcy or insolvency under any applicable federal or state law.

A default will be cured by the Borrower (i) remedying the potential event of default and (ii)
giving effective notice of such remedy to the Lender. In the event of multiple events of default,

the first to occur shall take precedence for the purposes of specifying outcomes under this
agreement.

6. Acceleration on Default
Upon the occurrence of an Event of Default all outstanding payments under this agreement will
become immediately due and payable, including both principal and interest amounts, without
further notice, presentment, or demand to the Borrower.

7. Choice of Law
This agreement will be subject to the laws of the State of New York applicable to contracts
entered into and performed wholly within that state.

8. Amendments and Waivers
Any purported amendment to, or waiver of rights under, this agreement will only be effective if
set forth in writing and executed by both parties.

9. Courts and Litigation
Any legal action brought to enforce, interpret or otherwise deal with this agreement must be
brought in the state courts of the State of New York located in New York County, and each of the
parties agrees to the jurisdiction of such courts over both the parties themselves and over the
subject matter of such a proceeding, and waives any claim that such a court may be an
inconvenient forum.

10. Time of the Essence; No Pre-Payment
Timely performance is required for any action to be taken under this agreement, and, except as
may otherwise be specifically provided herein, failure to take such action on the day specified
will constitute a binding failure to take such action. Payments shall only be made on or after the
dates specified in Section 2 or on or after such other date as may be required under Section 6;
pre-payments made on earlier dates shall not be accepted.

11. Notices
Notices provided for in this agreement will be given by an email to the email addresses set out
below and will be effective upon receipt.

[Lender email here] [Borrower email here]

Accepted and agreed:

LENDER BANK CO. BORROWER CORP.

By: _________________________ By: _________________________

Title: _______________________ Title: _______________________

[NOTE: Statute of Limitations on debt obligations in New York is 6 years] Draft of July 23, 2014

Source: Authors’ analysis

actual relationships.3 The agreed relationship must ultimately be interpreted by the counterparties, and
potentially by the courts or other arbitrators, in a broader context that may have changed substantially
over the course of the relationship. Clarity and simplicity of the contract are important virtues; ambiguity
and unnecessarily complex sophistication are not. We return to this fundamental point in the conclusion of
this paper.

The Formalism and the Contract

We propose to represent a financial contract as a deterministic finite automaton. This is an exercise in
parallel specification. The first specification is the streamlined contract, embodied in legalese, shown in
Table 1. The second specification is a DFA representation, in the tables and figure below, of the same
structure of rights, obligations, actions, and contingencies.

Formally, using Sipser’s (2006) notation, the DFA specifies a computation as a 5-tuple, (Q, Σ, δ, q0, F):

1. A finite set of states, denoted Q
2. A finite set of input symbols (events) called the alphabet (Σ)
3. A transition function (δ : Q × Σ → Q)
4. A start state (q0 ∈ Q)
5. A set of accept (end) states (F ⊆ Q)

The contract defines a finite, mutually exclusive, and exhaustive collection of states that describe the
possible conditions of the relationship between the counterparties. At any point in the life of the
agreement, the relationship is in exactly one state, q ∈ Q. Which particular state is operative at a given
point will depend on what has occurred, i.e., the sequence of observed events, e1, e2, … ∈ Σ up to that
point. Organizing a contractual relationship around discrete states, such as “performing,” “cancelled,” or
“defaulted,” is what good drafters do, perhaps subconsciously.

The alphabet represents the discrete set of inputs (Σ) that the agreement recognizes. These might
correspond to information events or actions taken by the counterparties. A contract makes positive
commitments to address those events that rise to the threshold of relevance for the relationship. Our
streamlined loan agreement, for example, does not countenance the outcome of the World Series or
fluctuations in the spot price of crude oil. Moreover, the contract simplifies matters by discretizing the
infinite gradations of possibility that typically describe the real world into a finite set of measurable events.
For example, changes in creditworthiness under the International Swaps and Derivatives Association’s
(ISDA) master agreement are mapped into a set of discrete credit events, such as “failure to pay” or
“repudiation,” as decided by the appropriate ISDA determination committee. The finiteness of the event

3 There are several alternative representations with expressiveness equivalent to the deterministic finite automaton (DFA). We
discuss tabular, graphical, and regular expression presentations below. In addition, any DFA can be converted to an equivalent
nondeterministic finite automaton (NFA), and vice versa, as a programmatic exercise. The NFA representation adds a layer of
abstraction, but is typically more compact than the corresponding DFA; see Sipser (2006), section 1.2. More expressive
computational models include pushdown automata (Sipser, 2006, 109ff) and Turing machines (Sipser, 2006, 137ff).

space constrains the possible complexity of the agreement. Formalizing these inputs as the alphabet Σ
helps clarify these principles.

The transition function describes the change in state of the relationship in response to the arrival of
particular events. That is, with the relationship starting in state q1 ∈ Q, the transition function defines a
mapping q1 × e → q2 that describes that the state of the relationship should change from state q1 to q2 in
response to the arrival of event e ∈ Σ. In principle, any combination of initial states and observed events is
conceivable, but in practice, an agreement will simply ignore some events in certain states, so that the
relationship remains in the initial state: q1 × e → q1. For example, if the contract is in the “cancelled” state,
then the occurrence of a “declaration of bankruptcy” event will not change the state; the agreement
remains cancelled: qcancelled × ebankruptcy → qcancelled.

This process of event and transition goes forward until the automaton reaches an “accept” state. The start
state, q0, is the spot where the relationship begins, and an accept state, qT ∈ F, is a spot where, if reached,
the process ends. The sets Q and Σ are both finite, and the transition function is deterministic, with exactly
one response (possibly “state unchanged”) to a given event. We assert that financial contracts should
follow a similar kind of step-by-step logic, matching information against a current state of facts and
contract execution specifications to lead to a next state. Normatively, natural language financial contracts
should be crafted as computational automata in this sense. That is, contracts are the legal machinery for
describing how a relationship will progress in response to key events, and should adhere to the
prerequisites of finite automata. This makes available a range of tools and conclusions from computation
theory.

IV. Representations of the Contract as a DFA

We illustrate this proposition explicitly in the terms of a DFA with the streamlined loan agreement set out
in Table 1. The streamlined agreement specifies one loan and only two repayments. The interest is a
simple percentage (5 percent, noncompounding), specified as explicit dollar repayments ($525 and $550)
to avoid the need for an ancillary interest rate calculation. There is one warranty, one covenant, and one
other event unrelated to payments that can trigger default. The default process shares a set of time
frames and notice specifications, and acceleration, if triggered, is still for the sum certain of the
outstanding payments, without additional penalty. The DFA implicitly presumes that default events cannot
occur simultaneously.4 We have not provided for collateral or a guarantee.

There are at least three standard forms for representing a DFA: (1) a visual plot of the state-transition
network, (2) a tabular (or matrix) listing of the elements of the 5-tuple, and (3) a regular expression. These
are formally equivalent, and there are standard procedures for translating without loss of information
among the three.

4 This is a cosmetic simplification. One could add states to the deterministic finite automaton (DFA) to handle “product events”
representing the simultaneous occurrence of two or more default triggers. This would proliferate states in the model, but without
adding sophistication beyond that expressible by a DFA.

Figure 1: Graphical Representation of the Deterministic Finite Automaton (DFA) for the Streamlined
Contract

Source: Authors’ analysis

Graphical Representation

We present a graphical representation of the state transition network for our streamlined loan agreement
in Figure 1. The nodes represent the possible states in the DFA. The relationship must exist in exactly one
state at each point in time. The labels on the arrows describe elements from the event alphabet that
trigger transitions from one state to another. The arrows themselves show the effect of the transition
function applied to the state and alphabet elements. The start state appears at the top, and the three
accept states of contract fulfillment, cancellation, and litigation appear with double borders at the bottom.
(Cancellation includes the case of creating a new contract through waiver or amendment.) The green
nodes, together with the sequence of green arrows that link them, indicate the happy path through the
relationship.

The representation in Figure 1 is a partial simplification, because it suppresses many transitions in the
interest of clarity. In most cases, an event leaves the state unchanged; the event is irrelevant in the
context of those states. To be complete, the graph should include transitions for all such events, looping
back to the same state. In addition, some events, such as those triggering litigation or cancellation, are
relevant in every state, but always transition to the same terminal state. We have omitted these repetitive
arrows from Figure 1 to avoid cluttering the visualization. These repetitive transitions do, however, appear
in the tabular presentation of the DFA to follow. Note, too, that an input event that represents an agreed
waiver or amendment will necessarily result in a new DFA representation with a different set of elements.
In the context of the current DFA, these events provoke a transition directly to the terminal cancellation
state.

Tabular Representation

The next representation is a tabular specification of the elements in the 5-tuple: {Q, Σ, δ, q0, F}. For each
state q ∈ Q, most events leave the state unchanged — the event input is irrelevant in that state and no
transition occurs. Also, for any state, the input T ∈ Σ (the final row of Table 3) representing a waiver,
amendment, or agreed termination of the contract moves us directly to an accept state terminating this
agreement/DFA. In the case of a waiver or amendment, the ultimate result is a new DFA with a different
set of elements. As a convenience, Table 2 and Table 3 also cross-reference the section in the natural
language most relevant to the state or event.

The tabular presentation emphasizes an important point: The two spaces of states (Q) and events (Σ) are
both simple sets. That is, there is no ordering or ranking among the elements of either set; any reshuffling
of the rows of Table 2 or Table 3 would not affect the DFA. The only special status is given to start state, q0,
and the accept states, F, declared as separate members of the 5-tuple. The subtle implication of this lack
of ordering among the elements of Q and Σ is that the states of the DFA are “memoryless.” In technical

Table 2: Contract States (Q)

State Label Natural Language Consequences and Correlates (Λ) Sec

start  Start Contract is fully specified; key information (payment dates, notice
addresses and procedures, choice of law, and dispute process)
delivered

7,
9,
11

q0  Active contract Contract is fully signed/executed
q1  Principal requested Borrower has requested and awaits $1,000 1
P1  Payment 1 accruing

P1d  Payment 1 due
P2  Payment 2 accruing

P2d  Payment 2 due
Dl Default (lender) Lender has failed to deliver principal 5

Acc1 Payments 1 and 2 accelerating Accelerated payment due is $1,075 6
Acc2 Payments 2 accelerating Accelerated payment due is $525 6

Db0_1 Default (borrower) payment missed Borrower has failed to make first payment on time and should be
notified

5

Dbcv_1 Default (borrower) covenant Borrower violates covenant(s) and should be notified 5
Dbrw_1 Default (borrower)

representations/warranties.
Borrower breaches representations or warranties and should be
notified

5

Dbbkr_1 Default (borrower) bankruptcy Borrower files for bankruptcy or insolvency and should be notified 5
Nb0_1 ∆ Borrower notified of payment

default
Borrower has two days to pay, or all payments accelerate 5

Nbnpd_1 ∆ Borrower notified of general default Borrower has two days to pay, or all payments accelerate 5
Db0_2 Default (borrower) payment missed Borrower has failed to make first payment on time and should be

notified
5

Dbcv_2 Default (borrower) covenant Borrower violates covenant(s) and should be notified 5
Dbrw_2 Default (borrower)

representations/warranties
Borrower breaches representations or warranties and should be
notified

5

Dbbkr_2 Default (borrower) bankruptcy Borrower files for bankruptcy or insolvency and should be notified 5
Nb0_2 ∆ Borrower notified of payment

default
Borrower has two days to pay or all payments accelerate 5

Nbnpd_2 ∆ Borrower notified of general default Borrower has two days to pay or all payments accelerate 5
xT † TERM Contract is fulfilled in accordance with its terms
xL † LIT A legal action is brought to enforce, interpret, or otherwise deal

with the agreement in the state courts of the state of New York
located in New York County that the results of this action will
replace the computation of the contract

9

xC † CANC Contract is canceled due to the passing of time beyond the statute
of limitations or canceled because of modification or termination
by mutual agreement of the parties

8

Crisis1 Crisis1 — accelerated payments not
made

Payments accelerated, but borrower has not responded 6

Crisis2 Crisis2 — accelerated payments not
made

Payments accelerated, but borrower has not responded 6

  States on the “happy” path of the contract lifecycle
 ∆ Default states
 † Terminal states Source: Authors’ analysis

Table 3: Event Alphabet (Σ)

ID Label Natural Language Event Specification Section

A Contract signed Contract is signed to bind all parties
B 1 Day passes since last

event
June 1, 2014, passes 1

C Money requested Borrower gives request for loan of $1,000 1
D Lawsuit A legal action is brought to enforce, interpret, or

otherwise deal with the agreement in the state courts of
the state of New York located in New York County.

E Statute of limitations June 1, 2020, passes — the Statute of Limitations on
debt obligations in New York is six years

F Principal advanced Lender advances $1,000 no later than June 2, 2014 1
G June 1, 2015, passes Payment 1 due on June 1, 2015 2(a)
H Representations/warranties Borrower’s assets exceed its liabilities as determined

under an application of the FASB rules of accounting
3, 5(b)

I Covenant Borrower fails to make a timely payment of an amount
of state or federal tax

4, 5(c)

J Bankruptcy Borrower files for bankruptcy or insolvency under any
applicable federal or state law

K Notice given Notice given to borrower of a failure to make timely
payment of an amount due to lender under this
agreement

5

L Notice given of general
default

Notice given to borrower of an event of default other
than a failure to make timely payment of an amount due

5

M Payment default cured A payment-related event of default is cured 5
N General default cured A nonpayment-related event of default is cured 5
O 2 days pass since last event Two days elapse since last event/notice 5
P June 1, 2016, passes Payment 2 is due on June 1, 2016 2(b)
Q Payment made $550
R Payment made $525
S Payment made $1,075
T Cancel or modify Contract in this form is canceled because of modification

or termination by mutual agreement of the parties
8

Source: Authors’ analysis

Table 4: Transition Function (δ)

Initial State Event Resulting
State

start  A q0
q0 B xT

q0  C q1
q1 B Dl
Dl D xL
Dl E xC

q1  F P1
P1  G P1d
P1d B Db0_1
P1 H Dbrw_1
P1 I Dbcv_1
P1 J Dbbkr_1

Db0_1 K Nb0_1
Dbcv_1 L Nbnpd_1
Dbbkr_1 L Nbnpd_1
Dbrw_1 L Nbnpd_1
Nb0_1 Q P2

Nbnpd_1 N P1
Nb0_1 O Acc1

Nbnpd_1 O Acc1
Acc1 B Crisis1
Acc1 S xT

Crisis1 E xC
Crisis1 D xL
Crisis1 S xT
P1d  Q P2

(Continued)

Initial State Event Resulting
State

P2  P P2d
P2d B Db0_2
P2 H Dbrw_2
P2 I Dbcv_2
P2 J Dbbkr_2

P2d  R xT
Db0_2 K Nb0_2
Dbcv_2 L Nbnpd_2
Dbbkr_2 L Nbnpd_2
Dbrw_2 L Nbnpd_2
Nb0_2 R xT

Nbnpd_2 N P2
Nb0_2 O Acc2

Nbnpd_2 O Acc2
Acc2 B Crisis2
Acc2 R xT

Crisis2 E xC
Crisis2 D xL
Crisis2 R xT

 Transitions along the happy path of the
contract lifecycle

Only the transitions that result in a change
of state are noted here. All un-noted
transitions result in the state being
unchanged.

 Source: Authors’ analysis

Table 5: Full Transition Matrix

 A B C D E F G H I J K L M N O P Q R S T

start q0 --- --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

q0 --- xT q1 xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

q1 --- Dl --- xL --- P1 --- --- --- --- --- --- --- --- --- --- --- --- --- xC

P1 --- --- --- xL --- --- P1d Dbrw_1 Dbcv_1 Dbbkr_1 --- --- --- --- --- --- --- --- --- xC

P1d --- Db0_1 --- xL --- --- --- --- --- --- --- --- --- --- --- --- P2 --- --- xC

P2 --- --- --- xL --- --- --- Dbrw_2 Dbcv_2 Dbbkr_2 --- --- --- --- --- P2d --- --- --- xC

P2d --- Db0_2 --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- xT --- xC

Dl --- --- --- xL xC --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

Acc1 --- Crisis1 --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- xT xC

Acc2 --- Crisis2 --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- xT --- xC

Db0_1 --- --- --- xL --- --- --- --- --- --- Nb0_1 --- --- --- --- --- --- --- --- xC

Dbcv_1 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_1 --- --- --- --- --- --- --- xC

Dbrw_1 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_1 --- --- --- --- --- --- --- xC

Dbbkr_1 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_1 --- --- --- --- --- --- --- xC

Nb0_1 --- --- --- xL --- --- --- --- --- --- --- --- --- --- Acc1 --- P2 --- --- xC

Nbnpd_1 --- --- --- xL --- --- --- --- --- --- --- --- --- P1 Acc1 --- --- --- --- xC

Db0_2 --- --- --- xL --- --- --- --- --- --- Nb0_2 --- --- --- --- --- --- --- --- xC

Dbcv_2 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_2 --- --- --- --- --- --- --- xC

Dbrw_2 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_2 --- --- --- --- --- --- --- xC

Dbbkr_2 --- --- --- xL --- --- --- --- --- --- --- Nbnpd_2 --- --- --- --- --- --- --- xC

Nb0_2 --- --- --- xL --- --- --- --- --- --- --- --- --- --- Acc2 --- --- xT --- xC

Nbnpd_2 --- --- --- xL --- --- --- --- --- --- --- --- --- P2 Acc2 --- --- --- --- xC

xT --- --- --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

xL --- --- --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

xC --- --- --- xL --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- xC

Crisis1 --- --- --- xL xC --- --- --- --- --- --- --- --- --- --- --- --- --- xT xC

Crisis2 --- --- --- xL xC --- --- --- --- --- --- --- --- --- --- --- --- xT --- xC

jargon, each state exhibits the Myhill-Nerode property of being independent of its past.5 We humans may
attend to the narrative of events that brought the relationship to a particular state, but the DFA does not
care. Once a state is reached, the history that led there is irrelevant; all that matters is the one-step-ahead
process of responding to whichever event arrives next. Any relevant history is encapsulated in the fact of
being in that state. As Rosenberg (2010, p. 56) puts it, “the state of a system comprises that fragment of its
history that allows it to behave correctly in the future.” This requirement of memorylessness implies a
discipline that should (normatively) govern the drafters of financial agreements. It restricts the contract to
consider only “regular” sequences of events, described below. It also has powerful implications for the
computational complexity of the contractual machinery.

The transition function in Table 4 simplifies the representation by suppressing the “stay-in-place”
transitions that return the system to the same state in response to an event.6 Unlike a parser, for example,
which has a responsibility to reject character sequences that are unacceptable, a financial agreement has
the flexibility simply to ignore most superfluous event occurrences. This creates a proliferation of self-
transitions that would otherwise clutter Table 4 with trivial entries. In other words, the application context
for financial agreements is less tightly controlled than for programming-language parsers, and contracts
should be relatively permissive and robust to irrelevant event occurrences. Table 4 also suppresses
omnipresent events such as the filing of a lawsuit (event D) that could be relevant in any state. For
completeness, Table 5 presents the full transition function as a matrix, where the rows correspond to the
states in Table 2, the columns correspond to the event alphabet in Table 3, and the state listed in in each
cell is the result of the transition function applied to the combination of the initial state (row) and event
(column) values. Unlike Table 4, the full transition function in Table 5 does not suppress irrelevant and
omnipresent events.

Regular Expression Representation

Our final representation of the deterministic finite automaton, or DFA, is a regular expression. A regular
expression — sometimes called a “regex” — is a compact shorthand notation focusing on the event
sequences that the DFA recognizes.7 We emphasize that the regular expression presentation captures the

5 The Myhill-Nerode property is essentially a non-stochastic equivalent of the first-order Markov property; in other words, a first-
order Markov chain is the probabilistic counterpart of a deterministic finite automaton (DFA). In particular, the characteristic
memorylessness of a Markov chain also applies here, even though the DFA is a non-random process. For a detailed discussion of
the Myhill-Nerode property and its implications, see Rosenberg (2010), especially chapters 4-5.

6 Von der Lieth Gardner (1987, chapter 6) refers to self-transitions as “ineffective events.” Knowing when to ignore events, rather
than reject (for example, by triggering a back-office investigation), is an important judgment call for contract drafters and
implementers. For example, expiration of the statute of limitations with respect to the obligations of the borrower (event E in
Table 3) before delivery of the principal (event F) is a physical impossibility, so there is little point in developing error-handling
procedures for this case. On the other hand, multiple occurrences of event F in quick succession would be a plausible clerical error,
and a rejection procedure might be appropriate to handle this case.

7 For an introduction to regular expressions, see Friedl (2006). For a more technical introduction, see Aho and Ullman (1995,
chapter 10). Hopcroft, et al. (2001), section 3.3, for an overview of the Unix syntax for regular expressions. Implementations of
regular expression parsers frequently augment the functionality with features such as grouping and backtracking to make them
more powerful than “pure” regular languages. We ignore these possible extensions here.

same structural information available in the tabular and graphical representations above (minus the
textual labels that describe the states and transitions). Indeed, there are standard procedures for
converting to the regular expression representation from the other representations, and vice versa.

More specifically, a finite automaton implies the set of all strings — concatenated sequences from the
event alphabet — that the machine will accept. These are the event sequences for which the contract has
scripted some appropriate behavior of the counterparties, and which leave the automaton in one of its
“accept” states. For example, a given contract might accept a happy-path event sequence of “sign”-“pay”-
“quit,” meaning sign the deal, then make the promised payments, then terminate the relationship. In
contrast, a sequence of “quit”-“pay”-“sign” would be nonsensical, and the contract’s DFA should declare
its inability to process this sequence of events. In the case of our streamlined contract, we can see that the
event sequence “ACFGQPR” defines the happy path, while the shortest event sequence resulting in a final
state is “AB.”

The DFA defines a grammar for the language of all acceptable (by the automaton) event sequences
recognized by the DFA. A DFA is one of the simplest computational formalisms and only supports some of
the least expressive languages, known as the “regular” languages. A useful feature of the regular
languages is that the shorthand notation of a regular expression can capture an entire regular language —
and thus a DFA — with a single snippet of event-sequence patterns.8

We use the method of state elimination to convert the DFA represented in Figure 1 into an equivalent
regular expression shorthand for the set of event sequences the DFA accepts. The key operation in state
elimination is to replace the event arrows in the DFA with arrows describing event sequences, while still
preserving the state-transition logic of the full graph. For example, consider this snippet from Figure 1:

{Pmt. 1 due} –[B]–> {Default (borr.) $ miss.} –[K]–> {Borrower notified of payment default}

One can eliminate the intermediate state, “Default (borr.) $ miss.” without disrupting the overall state-
transition logic by replacing the elided state with at joint transition arrow, labeled as an event sequence:

{Pmt. 1 due} –[BK]–> {Borrower notified of payment default}

This is a particularly simple example of state elimination, but the procedure extends in a straightforward
way to more involved states in the network.9

The regular expression for a given DFA is not unique. We find it convenient to organize the regular
expression for our streamlined contract as the union of four key segments, corresponding to: (a) rapid-
demise paths; (b) the happy path; (c) unhappy paths (payment and nonpayment defaults) around the first

8 For an introduction to the translation between deterministic finite automatons (DFAs) and regular expressions, see Sipser (2006),
section 1.3. For a deeper discussion, see Rosenberg (2010), especially section 5.2.

9 For a more detailed introduction to the state-elimination method, see Hopcroft, et al. (2001) section 3.2; or Sipser (2006), pp. 66-
76. Hopcroft, et al. (2001) describe two general methods for the DFA-to-regular expressions conversion, namely path induction
and state elimination. The two methods are equivalent in the sense of producing equivalent regular expressions.

payment date; and (d) unhappy paths around the second payment. Omitting the derivation of these four
expressions, the overall regular expression representation of the DFA is:

 A(B|CB[ED])| Rapid demise

 ACF(G(BK)?)QPR| Happy path

 ACF([HIJ]LN)*(GBK|[HIJ]L)O(S|B[DES])| Unhappy 1

 ACF(G(BK)?)Q([HIJ]LN)*(PBK|[HIJ]L)O(R|B[RED]) Unhappy 2

Note that the final segment, “unhappy 2,” follows the happy path up to state Q (payment 2 accruing) and
then diverges into the various ramifications of payment and nonpayment default from that state. The
happy path segment here includes a wildcard sub-segment, (BK)?, covering the possibility of a missed
payment that is quickly cured. Similarly, the two unhappy segments include a wildcard sub-segment,
([HIJ]LN)*, indicating that the contract can tolerate an arbitrary number (including zero), *, of any of
the three nonpayment defaults, [HIJ], as long as they are cured in a timely fashion, LN.

The regular expression's string of symbols provides a simple and intuitive measure of the complexity of the
contract, namely the length of the string.10 The complexity score should measure the length of a
standardized regular expression for the minimized DFA. In the example here, the complexity score is 109.
This descriptional complexity measure is more precise than traditional measures of computational
complexity. It is well known (see, e.g., Gasarch, 2014) that regular expressions have computational
complexity O(1) — i.e., given a family (or language) of event sequences defined by the regular expression,
there exists some finite upper bound on the computing time and memory required to decide whether an
arbitrary event sequence fits the pattern. This fact is critical for questions of system scalability, and so it is
perhaps unsurprising that the legal system has evolved standard practices at the level of individual
agreements that guarantee the feasibility of enforcement infrastructure (courts, lawyers, arbitrators, etc.)
in the aggregate. In contrast to standard measures of time and space scalability, O(T(n)) and O(S(n))
respectively, which assert an unspecified finite bound, descriptional complexity as defined here asserts a
cardinal measure of complexity. One can state, for example, not merely that two contracts are both
computable in finite time, but that one is more complex than the other in a specific sense.

A contract should be as simple as possible, but no simpler. Note that the bulk of the contract's complexity
(75.2 percent, to be precise) arises in the two nexuses of unhappy ramifications. That is, the two unhappy
substrings, while dealing with potentially unlikely events, account for 82 symbols in total, or 82/109 = 75.2
percent of the overall string length. Unsurprisingly, much of the hard work of managing a relationship
occurs not when things are going well, but rather when the process starts to deviate from the happy path.

10 One might object that, because a deterministic finite automaton’s (DFA) state transition network and its regular expression are
generally not unique, the complexity score is arbitrary. This objection is ill-founded, however, because there are programmatic
techniques to reduce any DFA to a theoretical minimum state-transition network and standard techniques for representing any
given DFA as a regular expression.

Much of the value of good contracts and good lawyering derives from the seemingly tedious planning for
all the ways that a relationship might run off the rails.

Financial risk and valuation models — the core of financial engineering — tend to ignore these unhappy
complications, focusing instead on probabilistic models of the happy path. Implicitly, this relies on an
assumption that all unhappy relationships are idiosyncratic, so that the manager of a well-diversified
investment portfolio can safely ignore these high-maintenance details. Holdings in many cases, such as
bank commercial loan portfolios, consist of a relative handful of large, specialized relationships; this
concentration of risk exposures denies the portfolio manager the luxury of simple diversification.
Alternative mechanisms, such as securitization and syndication, have evolved to spread the risks in these
situations. Formal modeling of these complicated portions of financial relationships as DFAs may make
them more measurable and manageable. If so, such modeling has the potential to create significant value
by facilitating the pervasive tasks of risk data integration at the very granular level of contractual events.11

VI. Conclusion and Directions for Further Research

Taken together, the three canonical representations — graphical, tabular, and regular — of the underlying
deterministic finite automaton are equally valid embodiments of the process set out in natural language in
the streamlined contract, with the added benefit of being expressly computable. The key is that the state
transition structure is sufficiently fundamental to a financial agreement that we can represent it using the
standard computational formalism of a DFA without disrupting the contract’s organizing principles.

Why does this matter? By identifying the DFA that undergirds a contract, we expose the entire edifice to
the tools and techniques developed in the computational and linguistics communities to work on finite
automata. Representing the proposition in a computational formalism opens the contract to a number of
tests, applications, and manipulations that are much more difficult to apply when the legal logic is
expressed in natural language. For example, it is possible to craft the three representations so that they
are precisely formally equivalent.

A key to establishing this mutual equivalence lies in the application of techniques for minimizing the finite
automaton. One of the contributions of the Myhill-Nerode Theorem is that there exists a unique smallest
finite automaton that will accept a given language of event sequences defined by the regular expression.
We did not formally minimize the DFA for our streamlined contract in this way, preferring instead to
maximize the common-sense legal semantics. It will be instructive to see how far our legally optimized
representation is from the theoretical minimum. This gap is likely to widen as we apply the approach to
more realistic agreements. It is important to recognize that legal contracts are ultimately devices for
coordinating human activity and much of their effectiveness derives from their enforceability. The lender
is willing to relinquish the principal, in part because she knows authorities exist to enforce repayment if
necessary. These authorities involve human interpreters — judges, juries, arbitrators, etc. — who must be

11 The Basel Committee on Banking Supervision (2013) identifies risk data aggregation as a key challenge for financial institutions.

able to parse the agreement in the crucial tasks of dispute resolution. Otherwise, the contract has failed to
meet one of its most important requirements.

As the analysis moves to more complex and realistic examples, we will want to expand the toolkit beyond
DFAs to include nondeterministic finite automata or NFAs. NFAs are a more sophisticated class of
automata that allow multiple alternate transitions from a state in response to an event.12 This is a
representational convenience that affords significant simplification of the state transition graph in many
cases. Note that NFAs are semantically equivalent to DFAs. They support the same set of regular
grammars, and there exist standard techniques for translating between DFA and NFA representations. Any
state-transition system with a DFA representation can be converted to an equivalent (in terms of its
acceptable sequences of events) NFA and vice versa. It is already clear from our preliminary forays into
standard financial master agreements that this sort of flexibility will be useful.

Other practicalities present a greater challenge to the use of a “pure” DFA to represent all aspects of a
relationship. Real relationships typically have to keep track of small but important facts, such as mailing
addresses and names of authorized signatories. As a simple example, the Section 12(b), “Change of
Details,” of the ISDA (2002) Master Agreement states: “Either party may by notice to the other change the
address, telex or facsimile number or electronic messaging system or e-mail details at which notices or
other communications are to be given to it.” In other words, the contract calls for a fact that is included by
reference, and which can be replaced without affecting the rest of the agreement. However, recording and
referencing an ancillary fact technically adds a state variable to the computation, potentially violating the
Myhill-Nerode property of the DFA. To handle this, the DFA formalism would need to be extended in some
way, such as making the ancillary fact an external reference with carefully controlled dependency
semantics.

The experience of augmented transition networks (ATNs), described by von der Lieth Gardner (1987), is
instructive in this context. An ATN augments a simple DFA by adding a local memory “register,” and allows
transitions to refer to and condition on the contents of this register. However, without tight constraints on
the register’s contents and how they may be used, the expressiveness of the ATN is likely Turing
complete.13 This would vastly extend the expressiveness of the representation, and effectively negate the
simplicity benefits provided by the Myhill-Nerode property. Further research is needed on appropriately
expressive formalisms to handle these practical cases.

The DFA captures the central legal logic of the contract. However, the DFA by itself does not capture the
entirety of the agreement. There are, in addition, two important semantic conversions that round out the
picture. First, the agreement defines a measurement or feature extraction process to convert from the
salient events and occurrences in the real world to the finite microcosm of the DFA. Has one of the events

12 Multiple responses to the same event appear to be a contradiction in terms. However, the multiple transitions are not to be
taken literally. Instead the nondeterministic finite automaton (NFA) is a modeling abstraction with identical expressiveness to the
DFA, but which is typically more concise. See Sipser (2006, chapter 1) for further discussion.

13 Turing-completeness is a statement about the expressiveness of a programming language. Roughly, a language is Turing-
complete if any computable function can be written in that language. In other words, the language can describe any computation
that might performed by the broadest class of computers, known as Turing machines. Most familiar programming languages, such
as C++, Java, or Python are Turing-complete.

specified as salient in the computation actually occurred? For example, the borrower represents that his
assets exceed his liabilities under generally accepted accounting principles. The DFA requires this simple
determination — yes or no —encoding this fact as an alphabet element. The measurement process to
reach this decision will typically involve a multitude of assumptions, interpretations, and judgments of
accounting, but the bottom line will have the full clarity of a discrete, binary variable. Requiring the
counterparties to maintain this clarity is a valuable function of the contract. In our current example, and
contracting practice more generally, the translation of external occurrences into the event alphabet is still
mostly handled by the natural-language definitions in the contract. Indeed, this translation pushes much of
the discretionary ambiguity of contracting, sometimes pointed to as an asset in the process, away from the
state-transition logic and into event definitions. The details and nuances of this measurement task are
outside the scope of this paper, but they are an important area for follow-on research.14

Second, there is a question of the semantic interpretation of the states and transitions in the automaton.
For example, when the automaton is in state “xL”, this fact about the DFA has important implications for
the parties back in the real world; one of the parties is likely to be filing litigation in a specified jurisdiction,
requiring documentation of claims, etc. Some interpretative mechanism is required to understand that the
simple marker, xL entails all these messy contextual details. This explicit mapping from the DFA to the
external legal context is a sort of formal semantics that requires additional attention in subsequent
research.15

The DFA is a system diagram setting out the logical structure of the contract. It is not intended to be a
procedural flowchart for automating the relationship.16 Indeed, the DFA would be a relatively
cumbersome form for a computation engine, as each step must be set out in order, without the availability
of memory or recursive operations to reduce the complexity of the representation. Actual implementation
of more complex financial contracts will use these shortcuts. Nonetheless, the DFA is a good starting point
for highlighting the conceptual link between contracting and computation.

An especially important extension of the state-transition model applies to financial agreements that
interact through the events they consume. A finite-state transducer (FST) is an enhanced DFA that allows
transitions to emit events. That is, contracts are not always mere consumers of events; contracts can
generate events as well. Moreover, the output events for one agreement may be input events for another.
A canonical example is a cross-default clause, which specifies that one contract should “listen” for

14 The need for adequate specification of the external events and internal logic of a contract is reflected in the broadly recognized
principle of Anglo-American law that courts will not grant enforcement to contracts that constitute “agreements to agree.” In
Delaware state courts, for instance, “a valid contract exists when (1) the parties intended that the contract would bind them, (2)
the terms of the contract are sufficiently definite, and (3) the parties exchange legal consideration.” Osborn ex rel. Osborn v.
Kemp, 991 A.2d 1153, 1158 (Del. 2010).

15 For an introduction to computational logics and formal semantics, see Huth and Ryan (2004).

16 At the implementation level, many contracts will also involve some calculation chores, such as determining precise payment
amounts, sorting through holiday calendars and day-count conventions, etc. The streamlined agreement elides these
considerations by explicitly stating precise dates and dollar amounts. In general, these sorts of calculations would and should
typically be the implementation details of some delegated subsystem.

transitions to default states as they occur in another agreement. Cross-default clauses can have systemic
implications, because they typically trigger payments acceleration, creating a legal mechanism for the
propagation of default across a network of contracts. A standard FST is a 6-tuple that augments the basic
DFA by equipping it with an output alphabet, often represented as Γ. The transition function, δ, is similarly
augmented, so that a transition is associated with a character from both the input alphabet, Σ, and the
output alphabet, Γ.17

There are a number of potentially significant implications that flow from this exercise in computational
contract specification. At the most basic level, the exercise of stating even a simplified contract as a DFA
serves as a proof of concept, demonstrating that we can describe legal rule and consequence structures
directly in computational terms. Of course, success here does not prove that this modeling technique
would apply to all contracts, including those of much greater complexity. At this stage, however, we see no
conceptual barrier to such a task, at least for agreements (which include the vast majority of financial
contracts) involving fixed event spaces and transition rules.

Although embodying financial contracts in software has the potential to provide significant benefits, we
also recognize that the increases in speed, accuracy and flexibility that this development will provide have
the potential to create problems as well. In automotive engineering, for example, a significant increase of
power in the motor is usually balanced by increased efficiency in the brakes. The use of one of the simplest
computational formalisms (the DFA) in our streamlined example is intentional in this regard. There is a
danger of the sorcerer’s apprentice problem: that the unwise application of powerful computational tools
could encourage inexperienced drafters with only limited understanding of the issues involved to create
contracts of unmanageable complexity.18

Our analysis of the streamlined loan agreement initiates a larger project of automating financial
instruments. An obvious next step will be to undertake such a description for existing agreements actually
used in financial markets, such as the ISDA (2002) Master Agreement and the 1997 International Foreign
Exchange Master Agreement. While the proof necessarily awaits the exercise, a preliminary review of
these agreements suggests that the challenges of restating them as DFA are those of time and patience in
the face of complexity, rather than of fundamental differences of kind. Such a step would be a precursor
to creating a software version of these instruments; it could also suggest re-drafting opportunities. We can
imagine an updated ISDA Master Agreement that is completely computable. In addition to restating
existing natural language contracts as DFA, another plausible next step would be a project of new drafting,
where the goal is to embody transactional structures straight into the formalism of computation and
software, without relying on a natural language precursor.

17 Transducers are widely used in control systems, including computer hardware design, and in computational linguistics. The
control applications are closer to our case of computable contracts; see Mueller and Paul (2000). There are two general classes of
finite-state transducers — Moore machines and Mealy machines —that differ essentially in whether outputs can (Mealy) or
cannot (Moore) depend on the input event that triggered the transition. See Moore (1956), and Mealy (1955).

18 Computer systems designers worry actively about the problem of state space explosion (i.e., proliferation). See for example
Baier and Katoen (2008), especially chapter 2.

References

Aho, A. V. and Ullman, J. D. (1995), Foundations of Computer Science, Computer Science Press.
http://infolab.stanford.edu/~ullman/focs.html.

Allen, L. (1957), “Symbolic Logic: A Razor-Edged Tool for Drafting and Interpreting Legal Documents,” Yale
Law Journal. 66, 833–79.

Baier, C. and Katoen, J. (2008), Principles of Model Checking, MIT Press.

Basel Committee on Banking Supervision (2013), “Principles for Effective Risk Data Aggregation and Risk
Reporting,” January, http://www.bis.org/publ/bcbs239.htm.

Bolton, P. and Dewatripont, M. (2005), Contract Theory, MIT Press.

Brammertz, W.; Akkizidis, I.; Breymann, W.; Entin, R. and Rustmann, M. (2009), Unified Financial Analysis:
The Missing Links of Finance, Wiley.

Brose, M. S.; Flood, M. D.; Krishna, D. and Nichols, B. (2014a), Handbook of Financial Data and Risk
Information Vol. I: Principles and Context, Cambridge University Press.
http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-finance/handbook-
financial-data-and-risk-information-i-principles-and-context-volume-1.

________ (2014b), Handbook of Financial Data and Risk Information Vol. II: Software and Data, Cambridge
University Press. http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-
finance/handbook-financial-data-and-risk-information-ii-software-and-data-volume-2.

Clark, C. (2011), “Whither Equity Volumes?” January 31, 2011. NYSE Exchanges.
http://exchanges.nyx.com/cclark/whither-equity-volumes.

Flood, M.; Mendelowitz, A. and Nichols, W. (2013), “Monitoring Financial Stability in a Complex World,” in
Lemieux, V. (ed.), Financial Analysis and Risk Management: Data Governance, Analytics and Life
Cycle Management, Springer Verlag, 15–46.
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642322310-
c2.pdf?SGWID=0-0-45-1356754-p174549637.

Foreign Exchange Committee (1997), “The 1997 International Foreign Exchange Master Agreement
(IFEMA),” Technical report, Federal Reserve Bank of New York, accessed December 12, 2014.
http://www.newyorkfed.org/fmlg/ifema.pdf.

Friedl, J. E. F. (2006), Mastering Regular Expressions. 3rd ed., O'Reilly.

Gasarch, W. (2014), “Classifying Problems into Complexity Classes,” Advances in Computers, 95, 239–292.

Genesereth, M. R., Greiner, R. and Smith, D. E. (1981), MRS Manual, Stanford University.
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA123256

Greenwood, R. and Scharfstein, D. (2013), “The Growth of Finance,” Journal of Economic Perspectives
27(2), 3–28.

http://infolab.stanford.edu/%7Eullman/focs.html
http://www.bis.org/publ/bcbs239.htm
http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-finance/handbook-financial-data-and-risk-information-i-principles-and-context-volume-1
http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-finance/handbook-financial-data-and-risk-information-i-principles-and-context-volume-1
http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-finance/handbook-financial-data-and-risk-information-ii-software-and-data-volume-2
http://www.cambridge.org/sg/academic/subjects/mathematics/mathematical-finance/handbook-financial-data-and-risk-information-ii-software-and-data-volume-2
http://exchanges.nyx.com/cclark/whither-equity-volumes
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642322310-c2.pdf?SGWID=0-0-45-1356754-p174549637
http://www.springer.com/cda/content/document/cda_downloaddocument/9783642322310-c2.pdf?SGWID=0-0-45-1356754-p174549637
http://www.newyorkfed.org/fmlg/ifema.pdf
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA123256

Grosof, B. N. and Poon, T. C. (2004), “SweetDeal: Representing Agent Contracts with Exceptions Using
Semantic Web Rules, Ontologies, and Process Descriptions,” International Journal of Electronic
Commerce, 8(4), 61–97.

Hopcroft, J., Motwani, R., and Ullman, J. (2001), Introduction to Automata Theory, Languages, and
Computation. 2nd ed., Pearson/Addison Wesley.

Huth, M. and Ryan, M. (2004), Logic in Computer Science: Modelling and Reasoning about Systems. 2nd
ed., Cambridge University Press.

ISDA (2002), “ISDA Master Agreement,” ISDA Bookstore, accessed December 12, 2014.
http://www.isda.org/publications/isdamasteragrmnt.aspx.

Kozen, D. C. (1997), Automata and Computability, Springer.

MacLeod, W. B. (2007), “Reputations, Relationships, and Contract Enforcement,” Journal of Economic
Literature 45(3), 595–628.

Mealy, G. H. (1955), “A Method for Synthesizing Sequential Circuits,” Bell System Technical Journal, 1045–
1079.

Moore, E. F. (1956), “Gedanken-experiments on Sequential Machines,” Automata Studies, 34, 129–153.
http://books.google.com/books?hl=en&lr=&id=oL57iECEeEwC&oi=fnd&pg=PA129#v=onepage&q&f
=false.

Mueller, S. M. and Paul, W. J. (2000), Computer Architecture Complexity and Correctness, Springer.

Object Management Group (OMG) (2014), “Enterprise Data Management Council (EDMC) Financial
Industry Business Ontology (FIBO) Standard, Version 1.0 - Beta 1,” Technical report, OMG, Accessed
December 13, 2014. http://www.omg.org/spec/EDMC-FIBO/FND/.

Project ACTUS (2015), “ACTUS: Algorithmic Contract Types Unified Standards,” Internet site accessed
August 28, 2015. http://www.projectactus.org/.

Rosenberg, A. L. (2010), The Pillars of Computation Theory State, Encoding, Nondeterminism, Springer.

Simonson, S. (2013), “Theory of Computation,” ADUni.org. http://www.aduni.org/courses/theory/.

Sipser, M. (2006), Introduction to the Theory of Computation. 2nd ed., Thompson Learning.

Software Engineering Institute (2009), “'Happy Path' Testing,” Acquisition Archetypes, Carnegie Mellon
University. http://www.sei.cmu.edu/library/assets/happy.pdf.

Stout, L. A. (2012), The Shareholder Value Myth: How Putting Shareholders First Harms Investors,
Corporations, and the Public, Berrett-Koehler.

Surden, H. (2012), “Computable Contracts,” University of California - Davis Law Review, 46, 629–39.

von der Lieth Gardner, A. (1987), An Artificial Intelligence Approach to Legal Reasoning, MIT Press.

http://www.isda.org/publications/isdamasteragrmnt.aspx
http://books.google.com/books?hl=en&lr=&id=oL57iECEeEwC&oi=fnd&pg=PA129#v=onepage&q&f=false
http://books.google.com/books?hl=en&lr=&id=oL57iECEeEwC&oi=fnd&pg=PA129#v=onepage&q&f=false
http://www.omg.org/spec/EDMC-FIBO/FND/
http://www.projectactus.org/
http://www.aduni.org/courses/theory/
http://www.sei.cmu.edu/library/assets/happy.pdf

	JEL codes: D86, K12, C63
	Keywords: Financial contracting, state-transition system, deterministic finite automaton, theory of computation, contractual complexity
	Key Messages:
	 Financial contracts are structured internally as state-transition systems
	 Discrete finite automata (DFA) are an adequate formalism to represent this structure as finite sets of states, events, and transitions
	 DFA representations readily allow for testing of contractual completeness and complexity
	Acknowledgments
	Abstract
	We show that the fundamental legal structure of a well-written financial contract follows a state-transition logic that can be formalized mathematically as a finite-state machine (specifically, a deterministic finite automaton or DFA). The automaton d...
	I. Introduction
	II. Legal Structure of Financial Contracts
	III. A Computational Representation of a Financial Contract
	The Formalism and the Contract

	IV. Representations of the Contract as a DFA
	Graphical Representation
	Tabular Representation
	Regular Expression Representation

	VI. Conclusion and Directions for Further Research

