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Systemic Risk: The Dynamics under Central Clearing

Agostino Capponi∗ W. Allen Cheng† Sriram Rajan ‡§

May 6, 2015

Abstract

We develop a tractable model to resemble asset value processes of financial in-
stitutions trading with the central clearinghouse for risk mitigating purposes. Each
institution allocates assets between its loan book and the account used to trade
with the central clearinghouse. We show that a unique equilibrium allocation pro-
file arises when institutions adjust trading positions to perfectly hedge risk stemming
from their loan books. We then analyze the dynamic equilibrium path. As a reg-
ulatory monitoring tool, our model shows a buildup of systemic risk, manifested
through the increase of market concentration, whose negative size externalities can
be internalized via a self-funding systemic risk charge mechanism. We provide new
testable predictions, including that (i) the volatility of the traded portfolio of a mem-
ber can be forecasted by the collective capital committed by all others, (ii) hedging
becomes increasingly costly for an institution as its asset value increases, (iii) market
shocks have smaller impact on allocation decisions than operational shocks.

Introduction

Banks create size externalities. Large banks are more likely to be complexly structured
and deeply interconnected with other banks and the financial system. Resolution of
large failed financial institutions is harder for regulators to deal with because they gen-
erate higher negative externalities compared to small institutions. Such too-big-to-fail
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systemic risk concerns motivated government sponsored bailouts of banks during the
Great Recession and are currently primary regulatory concerns.

The most significant regulatory response to the Great Recession was the Dodd–Frank
Wall Street Reform and Consumer Protection Act (2010), which mandated the central
clearing of all standardized over-the-counter (OTC) derivatives. Central clearing of OTC
derivatives has grown also due to dealers’ interest in facing robust counterparties. As
a result, dealers’ trading motives are driven less by speculation and more by a need to
hedge risks incurred in the course of business.1 In the centralized clearing framework,
clearinghouses act as central counterparties (CCPs) in both the exchange-traded and
OTC markets. Large banks participate as clearing members of the clearinghouse.

We investigate the formation of too-big-to-fail systemic risk in such a regulated mar-
ket using the Herfindahl–Hirschman Index, a measure of market concentration. We
construct a model for the asset value processes of clearing members that trade with
the central clearinghouse for risk-mitigating hedging purposes only. In particular, banks
trade to hedge undesired risk — that risk that members are inherently exposed to, but
unprepared to manage. Our model shows that systemic risk can build up over time. We
show that the volatility of the traded portfolio of a member depends on both its com-
mitted trading capital and the capital of all remaining clearing members. Importantly,
a unique equilibrium allocation of capital between trading and nontrading activities
arises, determined by all members’ assets and hedging preferences. Properties of this
equilibrium allocation imply that increases in market concentration can accumulate over
time.

We provide several testable predictions: (i) Hedging is increasingly costly (in terms of
committed capital) as the asset value of a member increases. Large banks have to commit
proportionally larger amounts of trading capital than small banks; (ii) volatility of the
traded portfolio can be forecasted not only by the committed capital of the member,
but also by the collective committed capital of all other members; (iii) shocks to the
financial market have a much smaller effect on asset allocation decisions than operational
shocks (shocks to their business operations); (iv) capital raising and centralized trading
have opposite effects on market concentration; (v) increases in market concentration are
observed when financial institutions choose diverse business operations.

Our study uses a similar categorization of collateral demand as in Duffie et al. (2015).
While they use historical asset returns and bilateral exposures to estimate collateral
demand, we take collateral demand as given and infer from it market beliefs about
future asset returns. In our model, members allocate assets between trading (the trade
account) and nontrading (the loan book) activities (see Figure 1). They have hedging
desires: their objective is to offset identified undesired risk, which has constant returns

1The Dodd–Frank Act restricts the trader functions of commercial banks to hedging purposes. This is
commonly referred to as the “Volcker rule” (section 619 of the Dodd-Frank Act), and is essentially a ban
on proprietary trading of banks. Exemptions from the ban include underwriting, market making-related
activities, risk-mitigating hedging, trading in certain government obligations, certain trading activities of
foreign banking entities, other permitted activities, and clarifying exclusions. Aside from risk-mitigating
hedging, all other exemptions relate to a bank’s function as a broker/dealer rather than a trader. See
also Fed (2013).
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Figure 1: (1a) A clearing member always allocates its assets between its trade account and loan book.
The trade account contains assets traded and used to trade with the CCP. The loan book contains loans
and other assets needed for business operations. (1b) Clearing members A, B, and C use their trade
account assets to trade with the CCP. They reallocate assets after profits and losses are realized.

to scale in loan book size, stemming from the loan book (see Figure 2).
We show that the riskiness of the trade account is implied both by the level of capital

the member commits, reflecting the riskiness of positions chosen, and the level of capital
the other members commit, reflecting the overall market risk. Thus, to perfectly hedge
against undesired risk members must take into account the hedging needs of all market
participants. We prove there exists a unique feasible allocation profile in which no
member has an incentive to change its allocation. This yields the endogenous dynamics
of members’ asset values processes, i.e. accounting for their equilibrium asset allocation.2

To the best of our knowledge our trading model is the first symmetric information
model that explicitly incorporates the zero-sum nature of financial trading. There is
rich literature on trading originated by the seminal paper of Kyle (1985), in which price
movements and trade volumes of securities are driven by asymmetric information and
heterogeneous beliefs of traders. In contrast, in our model trades are motivated by the
innate hedging desire of each member, and there is a single agreed-on price for each
contract.

We first analyze the impact of trading on market concentration. As pointed out
by the International Monetary Fund in its April 2014 Global Stability Report (IMF
(2014)), concentration in the banking sector has increased even after the Great Recession
for many countries, in part due to the governmental support of bank consolidations. In
2012, assets of the three largest banks in the United States represented 44 percent of total
banking assets. We show this concentration phenomenon can be further exacerbated by
the reformed, centralized trading setting. When loan books of members are exposed to

2Our model exhibits similarities with Uzawa’s two sector model on economic growth (Uzawa (1961)).
While he solves for allocations of labor and capital inputs and analyzes the deterministic equilibrium path,
we solve for intra-temporal equilibrium allocations of I members and analyze the stochastic equilibrium
path.
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Figure 2: A member who views credit risk as undesired hedges its credit risk exposures with centrally
cleared derivatives. The risk factors that it is innately exposed to come from the composition of its his
loan book. Trade account positions are taken to offset undesired risk.

similar risk factors, loan book values co-move positively, resulting in little impact on
market concentration. When they are exposed to diverse risk factors, however, market
concentration can increase. This points to a trade-off between financial market diversity
and systemic risk. While diverse loan book exposures can result in lower volatility in
the aggregate asset value, they pose systemic risk concerns.

We then proceed to analyze how concentration accumulates over time. As mentioned
above, concentration can arise from uncorrelated shocks; however, one would expect that
these shocks can just as well reduce concentration. Interestingly, we find that the col-
lective act of hedging undesired risk, while on the individual level is risk-mitigating and
desirable, also leads to a buildup of systemic risk. Because large banks have large risks
(in dollar amount) and their trade account volatilities have decreasing returns to scale
in asset size, they invest a large proportion of assets into hedging (trading). Since the
trade account assets are naturally hedged by the undesired risk factors stemming from
the members’ loan books, this high amount of asset value is hoarded by the large bank
and preserves market concentration. Our study takes a benefit of the doubt approach to
member behavior, in that systemic risk is not driven by asymmetric information, mem-
bers’ moral hazard (they carefully evaluate and hedge their risks), and inadequate risk
management of the clearinghouse (collateral requirements are diligent). That systemic
risk builds up is a feature of the system, rather than a feature of the individual agent
behavior.

Exogenous inflows of capital can also affect market concentration. If small mem-
bers choose to raise capital at a faster rate than large members, market concentration
stemming from centralized trading can be reduced. However, growth in banks’ assets is
usually funded by debt as opposed to equity issuance (see Adrian et al. (2012)), hence
resulting in increased leverage ratios. In addition, the government bailout of large banks
has created an implicit big bank subsidy (see Santos (2014), Acharya et al. (2014)).
This increases the costs of capital raising for small banks and hence indicates that it is
unlikely for capital raising to reduce concentration.

The emergence of size externalities induced by the seemingly innocuous act of hedging
has important policy implications. While hedging undesired risk may be optimal on an
individual risk management level, preventive policies targeting concentration effects are
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needed on the systemic level. We indicate how our model can incorporate a systemic
risk charge based policy which can be used to control market concentration. Concretely,
we show that a Pigouvian tax charge proportional to members’ trade account values,
in conjunction with a trading mandate, reduces market concentration. A Pigouvian tax
here is the the application of a charge on clearing member size, which in turn may relieve
some systemic risks associated with central clearing.

Our model may be best viewed as a regulatory monitoring tool. We do not explicitly
consider members’ default, but rather focus on the time period before the occurrence a
default event to study the buildup of systemic risk.3 In this respect, our study is most
closely related to monitoring approaches of Duffie (2014b) and Acharya et al. (2010a).
Duffie (2014b) proposes a qualitative framework in which regulators use stress tests on
systemically important financial firms to help evaluate the centrality of each firm in the
financial network. Our model provides asset value dynamics which take into account the
effects of centralized trading, and can thus supplement the quantitative aspects of these
stress tests. Acharya et al. (2010a) propose a taxing system in which financial entities
are taxed based on the extent and likelihood of their contribution to systemic risk. Our
model provides a similar systemic risk charge. In both cases, the systemic externalities
of large financial firms are internalized.

Our study contributes to the rapidly growing stream of literature on central clear-
ing. Previous works have analyzed optimal determination of margins (Glasserman et al.
(2014)) and specification of collateral requirements (Cumming and Noss (2013)). Differ-
ently from these studies which consider static models and focus on risk management and
design of a clearinghouse, we propose a dynamical model to analyze systemic implica-
tions after a clearinghouse has been well designed. Duffie et al. (2015) study the impact
on collateral demand of central clearing. We show that while in the cross section individ-
ual collateral demand is monotonic with respect to the total asset value of each member,
marketwide collateral demand is not. Duffie and Zhu (2011) analyze the netting benefits
resulting from central clearing and their impact in reducing counterparty risk. Biais
et al. (2014) study the optimal design of derivative contracts and clearing mechanisms
so that central clearing insures against counterparty risk. Duffie (2014a) discuss policies
for defaults resolution, including the haircutting of variation margin gains, tear-ups, as
well as the interruption of clearing services.

The rest of the paper is organized as follows. Section 1 develops the model. Section 2
studies the dynamics of our measure of market concentration, the Herfindahl–Hirschman
Index. Section 3 presents a self-funding systemic risk charge policy targeting at reducing
systemic risk. We discuss testable predictions of our model in section 4. Section 5
concludes. Appendix A provides supplementary notes on the dynamics of the trade
account value. All technical proofs are delegated to appendix B.

3We note that the absence of default in our model does not contradict the need of collateral. It is the
potential of default that calls for collateral, rather than actual defaults. An example of this phenomenon
in a binomial economy is given in Geanakoplos (2010). In fact, equilibrium contracts traded in binomial
economies require collateral just tight enough to eliminate default, as shown in Fostel and Geanakoplos
(2015).
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1 Model

The economy consists of I market participants, referred to as members, who novate all
trades to a single clearinghouse. We consider a filtered probability space (Ω,F , (Ft)t>0,Q),
where the filtration satisfies the usual conditions of completeness and right continuity
(see Protter (2004)). Here, Q is a risk-neutral measure associated with the risk-free
money-market account numéraire, so that value processes of all traded assets denomi-
nated in units of the numéraire are Q-martingales. In what follows, we use ◦ to denote
the component-wise (Hadamard) product. Let tm,m = 0, 1, 2, . . . , be an equally spaced
sequence of times, and ∆t = tm+1 − tm be the length of each time period.

Member i has a loan book and a trade account, whose value processes are denoted
by Li,Mi ≥ 0, respectively. The total asset value process of member i is denoted by
Ai := Mi + Li. The trade account contains centrally cleared derivatives positions along
with the associated committed capital. The loan book contains all remaining assets of
the member, including deposits, corporate loans, and other operating assets.

We assume the market is frictionless and treat all derivatives as contracts that carry
zero value. This uniform treatment greatly simplifies our analysis and does not result
in any loss of generality. Indeed, whenever a member purchases a derivative maturing
at time T that has price P (in units of the numerairé security), the trade is equivalent
to going long a futures contract at price P on the derivative maturing at time T , and
committing P units of the numerairé security as collateral. All collateral requirements
are met with the risk-free numerairé.4

The rest of the section is organized as follows. We analyze the dynamics of the trade
account value in section 1.1. Section 1.2 develops the continuous time model of members’
asset value dynamics.

1.1 Dynamics of trade account value

We discuss the components of collateral demand in section 1.1.1. This yields the trade
account value dynamics studied in section 1.1.2. Throughout the paper, we will use bold
symbols to denote vectors and matrices so to distinguish them from scalar quantities.

1.1.1 Components of collateral demand

Member i’s collateral demand consists of two components: the initial margin requirement
and the variation margin buffer. The initial margin is collateral posted to cover losses
incurred by the clearinghouse when the member defaults and its outstanding positions
need to be closed out. The variation margin buffer is the precautionary stock of collateral
members set aside to meet potential variation margin payments.5 Each member commits

4The International Swaps and Derivatives Association reports that, as of December 31, 2013, signifi-
cantly increasing proportions of margin requirements are met by cash. Cash represented 61 percent and
99 percent of total collateral delivered to meet initial and variation margin requirements, respectively.
See ISDA (2014), table 12.

5This categorization follows the approach outlined in Duffie et al. (2015). We do not differentiate
between the precautionary variation margin buffer and the variation margin velocity drag. In a fully
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exactly enough capital to satisfy its collateral demand. The member keeps sufficient
initial margin, Ci, in its margin account and sets aside variation margin buffer Vi.

The clearinghouse practices portfolio margining and sets the initial margin require-
ment depending on the outstanding portfolio traded with the member. If member i has
a derivatives portfolio Pi with the clearinghouse, we denote by Ci = Ci(Pi) the amount
of collateral that the clearinghouse requires it to keep in a margin account. Consistent
with anecdotal evidence, this collateral demand function is not member specific, i.e. two
members with identical portfolios must have the same collateral demand.

We model the variation margin buffer as a constant fraction of the initial margin,
Vi := λCi. Our choice is driven by the fact that the variation margin buffer is kept
to cover daily changes in portfolio values, while the initial margin is designed to cover
changes over a liquidation period, typically of five to ten business days. The total
collateral demand, and thus committed capital, is (1 + λ)Ci.

We assume that members maintain the buffer Vi(t) at the minimum level that guar-
antees that the probability of losses exceeding the buffer is zero in a small time period
of length ∆t.6 Thus the variation margin buffer is a measure of maximal probable losses
that can result from holding the portfolio Pi (in a time period of length ∆t). It is im-
portant to notice that Vi plays a dual role in our analysis, as it is both a measure of
committed capital and of probable losses that can result from holding the portfolio Pi.7

1.1.2 Trade account value dynamics

This section derives the trade account value dynamics under the risk-neutral probability
measure in two steps. First, we use the collateral demand processes to infer the risk-
neutral probabilities. We then give the dynamics under this measure.

We model the variations in market value of the positions of each member as fol-
lows. At time t, let {Pi(t)}Ii=1 be the portfolios held by members so that the mar-
ket clears (the chosen portfolio positions sum up to zero). They commit capital equal
to their collateral demands {Ci(t) + Vi(t)}Ii=1. At time t + ∆t realization of market
shocks results in gains for some members and losses for others. Member i receives pay-
off Ri(t + ∆t) ≥ −Vi(t), since the loss that can occur in the∑period ∆t is bounded

Iabove by Vi(t). Since derivatives trading is a zero-sum game,∑ ∑ i=1Ri(t+ ∆t) = 0 and
I IV (t) := i=1 Vi(t) = i=1 (Vi(t) +Ri(t+ ∆t)) . Thus, variations in market value can

be represented by redistribution of aggregate buffer value V (t) across members.

centralized trading setting, the drag component in their collateral model can be accounted for by mul-
tiplying the precautionary buffer by a constant. Differentiation thus has no qualitative effect on the
analysis.

6According to Duffie et al. (2015), the variation margin buffer is typically set so that the probability
of losses exceeding Vi is low within each day.

7To simplify the presentation, we assume that the initial margin requirement of the clearinghouse
is the same as the maintenance margin requirement, so that members can withdraw collateral from
their margin accounts when making gains, and make variation margin payments when suffering losses.
Specifying the difference does not change the qualitative conclusions of our analysis but introduces
complications when book-keeping the components of collateral demand.
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We model this redistribution process by sectioning V (t) into N ∈ N ticks of equal
V (t)size, , and describe their ownership with categorical random variables. Define theN

categorical random variable χn(t+ ∆t) = i if the n-th tick is given to member i at time
t + ∆t. The value at hand, defined as the previous collateral demand plus the realized
payoff, for member i at time t+ ∆t is thus

Ci(t) + Vi(t) +Ri(t+ ∆t) = Ci(t) +
V (t)

N
Ni(t+ ∆t), (1.1)

where Ni(t+ ∆t) := ∣{χn(t+ ∆t) = i}N ∣
n=1 .

We now assume that these N categorical random variables are i.i.d. and define
qi(t) := Q(χn(t+ ∆t) = i|Ft). When N is large, this assumption is analogous to shock-
ing all members’ portfolio values with zero mean normal random variables, conditioned
on them summing to zero, reflecting realistic stress testing scenarios employed by clear-
inghouses.8

Under the risk-neutral measure, the expected value at hand is equal to the cost of
purchasing the portfolio Pi, which is simply the amount of committed capital because
we treat all derivatives as contracts with zero price. Thus,

∣ ∣

(1 + λ)Ci(t)︸ ︷︷ ︸
committed capital

= EQ Ci(t) +
V (t)

N
Ni(t+ ∆t)

∣∣∣Ft .

[ ∣ ]

We can now infer the risk-neutral probabilities {qi}Ii=1,

Vi(t)

V (t)
= EQ 1

N
Ni(t+ ∆t)

∣∣∣Ft =: qi(t).

[ ∣ ]
8Notice that the independence assumption does not rule out observed correlation in identified risk

factors, but merely puts a constraint on the extremity, or the “fat-tailed”-ness of portfolio movements.
For example, consider the situation with two members, where at time t member 1’s portfolio is long one
contract, and member 2 is short the same contract. Assume there are four states of the world at time
t + ∆t, Ω = {(0, 0), (0, 1), (1, 0), (1, 1)}, which occur with equal probability. The payoff of the portfolio
to member 1, X1, is

X1(ω) =


$2, ω = (1, 1)

$1, ω ∈ {(1, 0), (0, 1)}
$0 ω = (0, 0)

.

We can model this by setting the tick size to $1, and let

χ1(t+ ∆t) =

{
1, ω1 = 1

2, ω1 = 0
,

χ2(t+ ∆t) =

{
1, ω2 = 1

2, ω2 = 0
.

An observer does not know the structural factors (ω1, ω2) which govern the payoffs, but identifies two
risk factors, F1 := 1χ1 + 2χ2 and F2 := 2χ1 + 1χ2. These factors can explain the movements in the

3 3 3 3

contract’s value perfectly but are obviously correlated. Thus, while underlying structural shocks are
independent, we can still observe correlation between identified risk factors.
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We then obtain that N(t) = (N1(t), . . . , NI(t)) is distributed according to the following
multinomial probability distribution function:

Q(N(t+ ∆t) = n|Ft) = N !
I∏
i=1

1

ni!

Vi(t)

V (t)

ni( )
(1.2)

Next, we derive the multi-period dynamics of the trade account value in the limiting
case, when the number of ticks goes to infinity and the length of the time period becomes
infinitesimally small. For large N and small ∆t, denote σ′−2 := N∆t. Then we can
approximate the multinomial distribution given by Eq. (1.2) with a normal distribution.9

Denote the conditional correlation matrix associated with the multivariate distribution
in Eq. (1.2) by Σ(Vi(t)). The exact expression for Σ is given in appendix A. We can
thus model the payoffs as

R(tm+1) ≈ σ′
√

V(tm) ◦ (V (tm)1−V(tm))ZΣ
m+1

1 := (1, 1, . . . , 1)′ ∈ RI ,
ZΣ
m+1|Ftm ∼ N (0,Σ(V(tm))∆t)

V (tm) :=
I∑
i=1

Vi(tm)

(1.3)

Member i’s trade account value, M , is given by M := C + V = 1+λ
i i i i Vi. The gainsλ

stemming from the trade account Ri(tm+1) =: ∆mMi are thus

∆mM = σ M(tm) ◦ (M(tm)1−M(tm)) ◦ ZΣ
m+1,

ZΣ
m+1|Ftm ∼ N (0,Σ(M(tm))∆t).

√
(1.4)

Here, σ = σ′ λ .1+λ

1.2 Trading as a hedging mechanism

In this section we use the trade account value dynamics given by Eq. (1.4) to build a
symmetric information model for asset value processes of members. Each member trades
to hedge its undesired risk. We obtain a continuous time model when the size of the
trading period shrinks to zero.

1.2.1 Total asset and loan book dynamics

The vector of changes in asset value of each member, denoted by ∆mA := A(tm+1) −
A(tm), is given by:

∆mA = φ ◦A∆t+ ∆mM + ∆mL, (1.5)

9When N is large, the multinomial distribution given by Eq. (1.2) converges weakly to a normal
distribution.
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In the above expression, φ is a vector whose i-th entry is the capital raising rate of the
i-th member, ∆mM is the vector of members’ gains from trading, and ∆mL the vector of
gains stemming from the loan book. At time tm, each member allocates its entire asset
value between its loan book and trade account. At time tm+1, each member realizes
gains or losses in its loan book and trade account, and additionally receives capital at
rate φ(t) from outside investors. Then, each member reallocates its current asset value
between its loan book and trade account.

Our model for loan book gains is chosen to be

∆mL = θL(tm) ◦ ZΞ
m+1,

ZΞ
m+1|Ftm∼N (0,Ξ∆t).

(1.6)

Here, ZΞ
m is the vector of risk factors driving the loan books of members. Moreover,

θ > 0 is the loan book volatility assumed to be identical across members. Homogeneity
is assumed since all clearing members are large financial institutions and hence the risk
profiles of their operational activities tend to be similar.

Due to their own business models, members choose to expose themselves to specific
levels and types of risk. We decompose the risk factors driving the loan book values,
ZΞ
m, into desired and undesired risk factors as

ZΞ
m+1 = −ρZΣ

m+1 + 1− ρ2ZΨ
m+1,

ZΨ
m+1|Ftm∼N (0,Ψ∆t).

√
(1.7)

Here, ρ ∈ (0, 1) is the hedging desire parameter capturing the fraction of risk which
is undesired for the member. Concretely, −ZΣ is the vector of members’ undesired
risk.10 The i-th component of ZΨ gives the desired portion of risk factors to which
member i is exposed. We refer to ZΨ as the vector of members’ desired risk. Notice that
this construction means that the members, in view of their undesired risk exposures,
construct their trade accounts to perfectly hedge undesired risk, i.e. construct a trade
account whose value process is driven by ZΣ. We assume that the desired risk of each
member is independent of its undesired risk, but not necessarily independent of the
undesired risk of other members.

1.2.2 Hedging strategies and the equilibrium allocation

Variations in the loan book value originate from exposures to either undesired or desired
risk factors. Indeed, using the decomposition in Eq. (1.7) along with Eq. (1.6), we may
rewrite the changes in loan book values of members as

∆mL = −ρθL(tm) ◦ ZΣ
m+1︸ ︷︷ ︸

undesired price movements

+ 1− ρ2θL(tm) ◦ ZΨ
m+1︸ ︷︷ ︸

desired price movements

.
√

(1.8)

10To be precise, this is the undesired risk that is traded. Market clearing implies that for any traded
undesired risk factor of a given member, there is a party willing to take on this risk. The undesired risks
are thus correlated.
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For notational convenience, we describe the allocation strategy of member i using the
trade ratio process

κi :=
Mi

Ai
. (1.9)

Since both loan book and trade account values are nonnegative, κi ∈ [0, 1].
We next impose the fundamental behavioral assumption: each member allocates as-

sets to be perfectly hedged against all undesired price movements. By a direct comparison
of equations (1.4) and (1.8), this means that member i chooses a trade ratio κi(tm) so
that 

−ρθLi(tm) + σ Mi(tm)(M(tm)−Mi(tm)) = 0

Mi(tm) = κi(tm)Ai(tm)

Li(tm) = (1− κi(tm))Ai(tm)

.

√
(1.10)

We also impose a market clearing condition that the quantities of traded risk must
satisfy:

I∑
i=1

√
Mi(tm)(M −Mi(tm))ZΣ

i,m+1 = 0. (1.11)

This condition states that the financial market merely transfers risk from one member
to another, and the “excess demand” of exposure to any risk factor is zero. We show
in appendix A that, given our choice of correlation matrix Σ, this condition is indeed
satisfied for any nonnegative process M (Proposition A.3). Thus changes in the mark to
market value of traded positions only result in transfer of market value, and consequently
collateral, among members.

Using the definition of κi given in Eq. (1.9), we can express both Li and Mi in terms
of the total asset value Ai. This yields a system of I equations, referred to as the hedge
equations, given by:

ρ2θ2(1− κi(tm))2Ai(tm) = σ2κi(tm)
j=i

κj(tm)Aj(tm), i = 1, 2, . . . , I. (1.12)
∑
6

We next define an equilibrium, specific to our context, as a situation in which no
member has incentive to change its trade ratio.

Definition 1.1. κ(tm) := (κ1(t1), κ2(t ′
m), . . . , κI(tm)) ∈ [0, 1]I is an equilibrium profile

at time tm if the hedge equations given by (1.12) are simultaneously satisfied.

It is clear that our equilibrium can be interpreted as a Nash Equilibrium. Interest-
ingly, when each member seeks to hedge his undesired risk, there is only one set of trade
ratios for which no member has an incentive to deviate from its chosen ratio.

Theorem 1. Assume Ai(tm) > 0 for all i = 1, . . . , I. Then there exists a unique
equilibrium profile at time tm.

11



We denote the vector of equilibrium trade ratios by κ∗, and remark that, from Eq.
(1.12), κ∗ only depends on the relative fraction of assets that each member holds, Ai ,∑ A

Iwhere A := j=1Aj .
Combining Eq. (1.5), (1.4), (1.6), (1.7), and (1.10), we obtain

∆mA = φ(tm) ◦A(tm)∆t+ σ M(tm) ◦ (M(tm)1−M(tm)) ◦ ZΣ
m+1 + θL(tm) ◦ ZΞ

m+1,

= φ(tm) ◦A(tm)∆t+ θ
√

1− ρ2(1− κ∗(tm)) ◦A(tm) ◦ ZΨ
m+1,

√

where the second equality follows from the unique equilibrium profile established in
Theorem 1.

1.2.3 The hedging equilibrium model

Letting ∆t→ 0, we obtain the continuous time model

dA = φAdt+ θL ◦ dWΞ + σ M ◦ (M1−M) ◦ dWΣ,

= φAdt+ θ
√

1− ρ2(1− κ∗) ◦A ◦ dWΨ,

√
(1.13)

(1.14)

where WΞ, WΣ, and WΨ are I-dimensional Brownian motions with instantaneous
correlation matrices Ξ, Σ, and Ψ, respectively. For notational brevity, we suppress the
time and state dependence throughout the paper wherever no confusion arises. The
market clearing condition given in Eq. (1.11) now becomes

I∑
i=1

√
Mi(M −Mi)dW

Σ
i = 0, (1.15)

as shown in Proposition A.1.
To summarize, each member identifies its undesired risk exposures and constructs

a trade account that can perfectly hedge them, taking into consideration the strategy
followed by other members in choosing their trade account values. This leads to a
dynamic equilibrium model for the total asset values of members. The above dynamics
indicate that changes in asset values are purely driven by desired risk factors since
members continuously hedge exposures to undesired risk factors through centralized
trading.

2 Market concentration and systemic risk

This section studies market concentration effects arising in our dynamic equilibrium
model of asset values. We quantify the dynamical properties of market concentration in
section 2.1. We analyze how concentration propagates from trade accounts to members’
total asset values in section 2.2. We discuss the ameliorating effects of capital raising
and the ensuing systemic implications in section 2.3.
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2.1 Market concentration: measure and dynamics

We use the Herfindahl index to measure market concentration. This is formally defined
as

η :=
I
i=1A

2
i

A2
,

∑
∑Iwhere A := i=1Ai denotes the aggregate asset value in the market. High values of the

index are indicative of a more concentrated market with higher heterogeneity in size of
the members. The index is bounded below by 1 and above by 1. It equals 1 when allI I
members have equal size and 1 when all but one member have zero asset value.

In order to isolate the influence of trading on market concentration from the impact
created by members’ external capital injections, we consider the case of homogeneous
capital raising rates. In this case, capital raising has no effect on market concentration.
We decompose the desired risk of each member into a systematic and an idiosyncratic
risk component. We denote by ψi the exposure of member i to systematic risk. This
implies that the correlation between two members’ desired risk profiles is given by ψiψj .
Under these circumstances, the next proposition shows that market concentration has
an inherent tendency to increase.

Proposition 2.1. Assume the dynamics given by Eq. (1.14) and that φ = φ1. Suppose
A2

Ψi,j = ψiψj for i = j, and 0 ≤ ψ2 ≤ 1√
i for each i. Then i submartingale.

2 2 is a strict Q−
A

Moreover, η is also a strict Q−submartingale.

We expect banks to have their desired exposures to market factors positively corre-
lated. However, it is unlikely that the strength of the correlation exceeds values on the
order of 1√ ≈ 71%. These high values are usually observed during periods of market dis-

2

tress, when asset classes become highly correlated (Hull (2012)). Hence, during normal
market conditions, the submartingale property of the Herfindahl index is reflective of a
market in which few members tend to dominate in size. This raises immediate concerns
on systemic risk since failures of large banking entities tend to be more disruptive to the
market (Acharya et al. (2010b) and Brownlees and Engle (2015)).

We remark that our result holds under the risk-neutral measure Q, which can be
interpreted as the product of the real world probability measure and marginal utility
of a representative investor. The statement of η being a submartingale can thus be
understood as either (i) the real world probability of the Herfindahl index increasing is
high, or (ii) increases in the index are positively correlated with the occurrence of “bad”
states of the world. The regulator would be concerned in both cases: in the first case
for the likely increase in systemic risk; in the second case because systemic risk increases
exactly when the market is performing poorly.

Our results also indicate that if business operations (desired risk factors) of mem-
bers are diverse (correlations are low) then the market evolves towards a state of high
heterogeneity in asset values. All else equal, the aggregate value of members’ assets is
less volatile when correlations are low, since the idiosyncratic risk components can be
diversified away on the aggregate level. However, the distributional consequences are

6
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significant. As time progresses, asset values of some members will become significantly
larger than others. This points to a trade-off between stable growth of aggregate asset
value in the market and the ensuing market concentration consequences.

2.2 Propagation of concentration

In our model, the source of market concentration is the members’ trade accounts. Indeed,
in appendix A we show that in the absence of reallocation, the variation margin buffer
dynamics converge to a Wright-Fisher diffusion process in the continuous time limit.
A well known property of this process is fixation, where all but one component of the
process reaches zero in a finite time horizon with probability one. That is, if we let the
trading gains and losses in each period accumulate in the trade accounts, the variation
margin buffers move towards a state of absolute concentration. We refer to this as the
concentration effect of trading. See appendix A for the mathematical details.

We separately discuss the two main mechanisms which contribute to origination and
propagation of market concentration. First, the trade account assets can be thought of
as hoarded assets and allow for members with large trade account values to maintain
high asset values (section 2.2.1). This allows the existing levels of market concentration
to be preserved over time. Second, trade ratios depend monotonically on asset values
(section 2.2.2 and 2.2.3), so that members allocate larger amounts of assets to the trade
account when their asset values increase. This allows us to see how the concentration
effect emerge on the level of members’ total asset values. Taken together, these two
mechanisms explain why market concentration tends to rise over time.

2.2.1 Market shocks and operational shocks

Market shocks occurring to the trade account value of a member do not impact the
total value of its assets. To see this, suppose that there is a positive shock to the trade
account value of member i. Because undesired risk is fully hedged, this shock is offset
by a negative shock of the same magnitude to member i’s loan book. Since trading is a
zero-sum game, the gain of member i must correspond to collective losses experienced
by the trade account values of other members. These losses, again, are compensated by
commensurate gains in their loan book values. Hence, assets held in the trade account
can be thought of as hoarded assets.

In addition, if member i’s undesired risk were independent of other members’ desired
risk, the market shock would have no effect on the total asset of each member j = i, and
consequently no effect on their equilibrium trade ratios. Concretely, member i would
withdraw its gains from its trade account. The other members would instead extract
capital from their loan books and inject it into their trade accounts so to hedge future
undesired price movements in their loan books. Thus, market shocks can only indirectly
impact the allocation of a member if they are correlated with operational shocks of other
members.

As opposed to market shocks, operational shocks impact both total asset values and
equilibrium allocations. We illustrate this by considering the situation where the total

6
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asset value of member i is large relative to the aggregate asset value in the market. In
this case, its trade ratio approaches unity. To see this, set

δ :=
σ2

θ2ρ2
> 0. (2.1)

and rewrite Eq. (1.12) as

0 ≤ (1− κ∗i )2

κ∗i
= δ

∑
j=i

κ∗j
Aj
Ai
≤ δ

∑
j=i

Aj
Ai
→ 0,

6 6
(2.2)

if Ai → ∞. Thus, κ∗ →i 1. Moreover, from Eq. (1.12) κ∗ →i 1 implies that κ∗ →j 0
for j = i. As a result, a negative shock occurring to the loan book of member i would
have a small impact on its total asset value, since its balance sheet mostly consists of
assets from its trade account. By contrast, the same shock (in percentage terms) has
a substantial effect on the asset values of the remaining members, since their balance
sheets are largely composed of assets belonging to their loan books.

The discussion above indicates that, at any point in time, the trade account value
is a guaranteed minimum of asset value that the member will hold in the next period.
The assets in their trade accounts are safe, and are thus hoarded.

6

2.2.2 Trade ratios and asset values: cross-section dependence

We first quantify the cross-section monotonic dependence of trade ratios on total asset
value:

Proposition 2.2. The following statements hold:

• κ∗ ≥i κ∗j if and only if Ai ≥ Aj.

M• If Ai > Aj, then i−Mj κ
i− > min{ ∗, κ∗}.A Aj i j

The first statement of the proposition explains how market concentration is pre-
served: plotting members’ asset values on the x-axis and equilibrium trade account
values on the y-axis outlines a superlinear function.√ Since the trade account value en-
ters concavely into the volatility structure (σ M ◦ (M1−M)), each incremental unit of
capital allocated to hedging generates less volatility of the trade account value. Members
with high asset values thus have even higher trade account allocations. Recall that from
our previous discussion, shocks are most punitive to members whose assets are mainly
invested in their loan books. A large member will thus have a tendency to remain large.

To analyze the impact of a change in members’ asset values on the equilibrium trade
ratios, and exclude the effects from changes in aggregate trade account value, we consider
what would happen if the asset values of members 1 and 2 were to be switched, all else
being equal. After the switch, the equilibrium trade account values remains the same,
except for having the trade ratios of the two members switched. The second statement
of proposition 2.2 shows, in this case, how concentration propagates: the member who
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has realized a gain in this switch invests a fraction of its gains higher than its original
trade ratio. An increased fraction of its total assets is used to hedge undesired risk,
hence a higher trade ratio.

2.2.3 Trade ratios and asset values: sensitivity analysis

This section studies the dependence of trade ratios on changes in the asset value of
one member. We consider the specific case of two members. The main insight is that
although equilibrium trade account values are monotonically increasing in members’
asset values, the aggregate trade account value is not. It may increase or decrease
depending on asset value heterogeneity.

Proposition 2.3. Suppose I = 2. If δ = 1, the system of equations (1.12) admits an
explicit solution given by

6

κ∗1(A1, A2, δ) =
δ − δA2

A1
− 2 +

(
δ − δA2

A1
− 2
)2

+ 4(δ − 1)

2(δ − 1)
,

κ∗2(A1, A2, δ) =
δ − δA1

A2
− 2 +

√(
δ − δA1

A2
− 2
)2

+ 4(δ − 1)

2(δ − 1)
.

√
(2.3)

If δ = 1, we have

κ∗1(A1, A2, 1) =
A1

= lim
→

κ∗1(A1, A2, δ),
A1 +A2 δ 1

(2.4)

κ∗2(A1, A2, 1) =
A2

A1 +A2
= lim

δ→1
κ∗2(A1, A2, δ). (2.5)

Moreover, κ∗1 is increasing in A1 , while κ∗A2 2 is decreasing in A1 .A2

Using the expressions in proposition 2.3 we can compute the sensitivity of the trade
account value of each member to its or to the other member’s asset value. Recalling
that M∗1 = κ∗1A1, and using that both κ∗1 and κ∗2 only depend on the ratio A1 , we obtainA2

from the chain rule that ∗ ∗∂M1

∂A1
=
∂κ1

∂A1
A2

A1

A2
+ κ∗1.

∂κ∗
The fact that 1

A1
> 0 implies that M∗1 is a superlinear function of A1. Therefore, when

∂
A2

the asset value of a member doubles, the value of its trade account will at least double.
Moreover,

∗ ∗ ( )2∂M2

∂A1
= − ∂κ2

∂A2
A

A2

A1
< 0.

1

Hence, when the asset value A1 of member 1 increases, the trade account M∗2 of member
2 decreases. Notice that, from Eq. (1.8) and (1.10), a member can use the same amount
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of committed capital to hedge against more undesired price movements if the volatility
of its trade account is high. Thus, hedging is less costly (in terms of committed capital)
in this case. This explains why member 1 needs to more than double the value of its
trade account. Since its counterparty is trading less, member 1 will have to trade more
to obtain a position with volatility high enough to hedge its undesired price movements.
Thus, we see that an increase in asset value (i) increases the amount hoarded and
(ii) crowds out hedging activity of other members. Both of these effects lead to the
propagation of concentration.

While collateral demand of each member is monotonic in its total asset value, the
aggregate collateral demand is not. Indeed, using the expressions for κ∗1 and κ∗2 given in
proposition 2.3, we can calculate the aggregate trade account value (collateral demand)
as

M∗ = M∗1 +M∗2 =
−A1 −A2 + δ2(A1 +A2)2 − 4δ(δ − 1)A1A2

δ − 1
,

√
and

∂M∗

A1
=

1

δ − 1
−1 +

(A1 +A2)δ2 − 2δ(δ − 1)A2√
δ2(A1 +A2)2 − 4δ(δ − 1)A1A2

.

( )

Consider the case of δ = 2 and A1 = A2. Then

∂M∗

A1
= −1 +

√
2 > 0.

Thus when members have equal size, the superlinearity of trade account values domi-
nates, and an increase in the asset value of a member leads to an increase in the aggregate
trade account value. Next, consider the case when δ = 2 and A2 = 2A1. Then

∂M∗

A1
= −1 +

2√
5
< 0.

Hence, when members are heterogeneous in their sizes, the growth in asset values of the
smallest member can lead to a decrease in the aggregate trade account value.

The above analysis shows that the impact of regulatory policies regarding asset trans-
fers may have unintended consequences on market collateral demand. When regulators
perform asset transfers, say, in the form of a bailout, to rescue a member in financial
distress, an increase or decrease in market collateral demand can be generated. Increases
in collateral demand are undesirable since collateral is most likely a scarce resource when
the market is in overall distress. On the other hand, asset transfers may decrease collat-
eral demand and lead to an excessive drop in prices of securities used as collateral. Our
model can provide an analytical assessment of the impact of asset transfers on collateral
demand.

17



2.3 Trade-off between market concentration and leverage

This section analyzes the impact on market concentration created when members raise
capital in reaction to asset value losses. We consider the situation where members raise

A2

capital to preserve their market power, quantified by i
2 , i.e. member i has high market

A
A2

power when this ratio is large. Since i
2 is a strict submartingale, the market power of

A
each member grows, on average, over time. Consequently, market participants would
have little incentive to alter the rising trend of the Herfindahl index ex ante. However,
we may expect that a member who has realized losses during the last period chooses to
raise capital at a faster rate so to increase the value of its total assets and compete with
the other members.

We analyze a stylized setting where we can quantify the effects of heterogeneous
capital raising rates on market concentration. Assume that all members raise the same
amount of capital U per unit time. This means that small members raise capital at a
higher rate than large members. Then we have the following:

Proposition 2.4. Assume the dynamics given by Eq. (1.14). For i = 1, . . . , I, let
φAi = U , where U is an Ft adapted stochastic process. Then the drift coefficient of η is
a monotonically decreasing function of U . Moreover, suppose that η(t0) > 1 at a fixedI
time t0. Then there exists an Ft adapted stochastic process U∗ such that

lim
h→0

EQ [η(t0 + h)− η(t0)|Ft0 ]

h
< 0. (2.6)

If small members raise capital at a faster rate than large members, the expected
growth rate of market concentration would be reduced and can even become negative.
The larger U(t0), the stronger the downward impact on expected growth rate at time t0.
This happens because when U(t0) is large, the inter-period change in loan book values
become negligible relative to the high amounts of raised capital.

However, the regulator may not want members to raise capital incessantly. As
pointed out by Adrian and Shin (2011), equity is sticky. Empirically observed equity
book values of banks are aptly described by a constant growth rate. In addition, funding
needs are mostly satisfied by debt and disciplined by market permitted leverage (Adrian
et al. (2012)). Therefore, increasing capital raising rates most likely leads to an increase
in the leverage ratio, another important measure of systemic risk (Bisias et al. (2012)).

3 Preventive policies

We have seen in the previous section that market concentration can be reduced if mem-
bers are allowed to freely raise capital. This points to a trade-off the regulator may face
when controlling two important systemic risk measures. If the regulator freely allows
members to raise capital, their leverage ratios may increase. If the regulator places
strong restrictions on the capital levels which members are allowed to raise, market con-
centration would tend to increase. Section 3.1 proposes a policy imposing systemic risk
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charges to members along with a trade ratio mandate, with the objective of helping the
regulator address the trade-off. Section 3.2 analyzes potential reactions of members to
such a charge mechanism in case no trade ratio mandate were to be imposed.

3.1 Systemic risk charge based policy

The failure of large financial entities may create significant negative externalities. The
two-step policy described next forces members to internalize the size externalities arising
in our model.

1. Mandate members to match their trade ratios to the equilibrium value κ∗ obtained
by solving the system of equations (1.12).

2. Concurrently and for each clearing member, impose a charge at rate µ per unit
time on the trade account value and transfer to each a fixed percentage, ψ, of the
aggregate trade account value.

When this policy is in place, the modified dynamics of the trade account values is
given by

∆nM = −µM∆t+ ψM1∆t+ σ
√

M ◦ (M1−M)ZΣ
n . (3.1)

We also impose an instantaneous budget constraint

I∑
i=1

µMi =
I∑
i=1

ψM, (3.2)

so that aggregate net transfers from the regulator are zero at any point in time, hence
making charges self-funding. Notice that the instantaneous budget constraint implies
µ = Iψ. We refer to µ as the policy rate.

The continuous time asset value dynamics of the members, adjusted for systemic risk
charges, are then given by:

dA = φAdt− µ M− M

I
1 dt+ σ

√
M ◦ (M1−M) ◦ dWΣ + θL ◦ dWΞ

( )
(3.3)

= φAdt− µ M−
I

1 dt+ θ 1− ρ2(1− κ∗) ◦A ◦ dWΨ,

(
M

) √
(3.4)

where we recall that the trade allocation ratio κ∗ is mandated by the regulator. In other
words, members would need to follow the same hedging behavior as in the absence of
any policy.

The next proposition shows that the policy rate parameter µ can be suitably used
by the regulator to control market concentration. If the regulator deems it to be too
high, it can choose higher values of µ and reduce the average growth rate of market
concentration.
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Proposition 3.1. Assume the dynamics given by Eq. (3.4), where φ = φ1. Then the
drift coefficient of η is a monotonically decreasing function of µ. Moreover, let t0 be a
fixed time such that η(t ) > 1

0 . Then there exists a Ft adapted stochastic process µ suchI
that

lim
h→0

The purpose of the systemic charges is two-fold. From a systemic risk standpoint,
the objective is to control the evolution of market concentration and avoid too-big-to-fail
scenarios. From a macroprudential perspective, controlling market concentration may
mitigate credit contraction when negative shocks occur. In light of proposition 2.2, in a
highly concentrated financial network small members allocate a high proportion of their
assets to their loan books. As a consequence, they may contract their credit provisions
more drastically when they experience a negative shock to their loan books.

Since the charge allocation policy is self-funding, market concentration can be kept
low without lightening regulatory constraints on external capital raising levels through
debt issuance. The systemic risk charge is essentially a charge on size. In this respect,
it presents similarities with the policy proposed by Acharya et al. (2010b), in which
financial entities are taxed based on the extent and likelihood of their contribution to
systemic risk. In a related study, Acharya et al. (2010a) describe how externalities
can be internalized by institutions via the imposition of a tax on systemic expected
shortfall (SES). Moreover, they show that regressing SES on institution size gives a
positive coefficient that is both statistically and economically significant. Thus, our
proposed systemic risk charges policy supports the taxing system proposed by Acharya
et al. (2010a). While Acharya et al. (2010a) apply taxes on the basis of the expected
losses incurred by the financial system, conditional on the occurrence of a systemic crisis,
and propose to reward firms carrying less risk, our systemic risk charge policy rewards
members with smaller sizes to mitigate market concentration.

EQ [η(t0 + h)− η(t0)|Ft0 ]

h
< 0. (3.5)

3.2 The regulator’s trade ratio mandate

We remark that the hedge equations given by (1.12) would not hold if the regulator
specifies only a policy rate, but does not impose the trade ratio mandate to members.
When only a systemic risk charge is imposed, members would most likely respond with
a change in their hedging behavior.

One potential response is that all members could uniformly hedge smaller portions of
undesired risk with respect to what is considered optimal by the model. Since members
with low trade account values receive higher net transfers from the regulator, there
may be a race to exit if members deem systemic risk charges to be too high. This
may be undesirable from the point of view of the clearinghouse, which would see its
profits decrease as a result of the reduced volume of trading activities conducted with
the members. Moreover, from the regulator’s point of view, it would be governing a
system where members are exposed to higher amount of undesired risk.

Another potential response from the members is that they may cease to act in a
competitive nature. A necessary assumption made in the derivation of the trade account
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value dynamics of members is that there are no arbitrage opportunities when members
establish cleared trades. Under a systemic risk charge, members may choose suboptimal
hedges so that overall benefits from trading with the clearinghouse are optimal. In this
case, our derived dynamics may not serve as a good description of trading activities.

Our policy mechanism prevents both of the above responses. Since systemic risk
charges to members are fixed given their trade ratio requirements, it is optimal for
them to choose a portfolio composition that hedges all of their undesired risk. Clearing
members thus have no reason to grant arbitrage trading opportunities to others and our
trade account dynamics remain a good description of gains and losses.

4 Testable predictions

Our study provides several testable predictions for a centrally cleared trading network. In
particular, our analysis suggests a line of empirical research that tests relations between
the hedging strategies of market participants, their business operations, and market
collateral demand.

First, our model predicts a superlinear relationship between asset value and the
amount of capital committed to trading. The results in propositions 2.2 and 2.3 indi-
cate that hedging is increasingly costly. Each incremental unit of capital committed to
hedging is less efficient, and thus a member must allocate an increasingly larger frac-
tion of its assets to hedging if its asset value increases. Empirically, this may be tested
using cross-sectional regressions estimating the relation between enterprise value and
collateral demand of institutions with similar business profiles. The collateral demand
may be estimated using an approach similar to the one proposed by Duffie et al. (2015).
Alternatively, a time series approach can be employed where incremental change of asset
value is regressed against change in collateral demand.

Second, our model indicates that volatility of the member’s trade account is not only
governed by its decisions, but also by the decisions of all other members. As expected,
member i’s collateral demand, designed to cover variations in the market value of its
portfolio, is a good predictor of its realized volatility. Interestingly, the collateral demand
of all clearing members excluding i, is also a good predictor of member i’s realized
volatility.

Third, market shocks have a much smaller effect on asset allocation decisions than
operational shocks of the same magnitude. Market shocks occurring to member i′s trade
account are naturally hedged by undesired movements in the loan book portfolio, thus
have no direct effect on its asset values and allocations (section 2.2). Such shocks can
only affect its allocations indirectly by impacting other members’ asset values, which in
turn affect member i′’s allocation in equilibrium. The hedge equations in Eq. (1.12) can
be used to test such a relation between change in asset value and allocations. Another
way of testing this relation is identifying pure market shocks and operational shocks
and performing an impulse response analysis on the asset allocations and trade ratios.
We expect operational shocks to have a longer lasting effect on collateral demand than
market shocks.
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Fourth, a fundamental regulatory concern is the understanding and monitoring of
the dynamics of market concentration. Our analysis shows that there may exist a trade-
off between controlling market concentration and leverage (proposition 2.4). Our model
predicts that in a fully centrally cleared network market concentration has an inherent
tendency to increase, but this effect can be hidden if members raise capital at heteroge-
neous rates. Hence, empirical work can be conducted to separate the effects of capital
raising from trading. One direct approach would be to identify historical periods where
capital raising rates were relatively homogeneous across members and estimate changes
in market concentration during this period.

Fifth, while diverse business operations of financial institutions (diversity in desired
risks) allows for more stable growth in the aggregate asset value, it also creates un-
desirable distributional consequences (proposition 2.1). While idiosyncratic risks are
diversified away on the aggregate level, they are the driving force behind heterogeneity
in members’ asset values, and may thus lead to a concentrated financial network. One
way to analyze concentration effects is to identify different periods, each associated with
a specific level of asset returns correlation, and separately estimate the distributional
changes in asset values.

5 Concluding remarks

We provide a theoretical framework in which the implementation of two important finan-
cial reforms, namely the centralized clearing of trades and the restriction on proprietary
trading, is taken into account. We show the uniqueness of an intra-temporal equilib-
rium allocation profile, or equivalently stated, the dynamic optimal strategies employed
by clearing members as they hedge their loan books. We then analyze the asset value
dynamics of clearing members arising from the equilibrium path. We find that:

1. Capital costs of members’ hedging positions depend on those of all other members.
The amount of collateral required to hedge per unit undesired risk is higher for a
member when other members have larger trade accounts.

2. Hedging is increasingly costly. All else equal, doubling the asset value of a member
would more than double its equilibrium trade ratio.

3. Market concentration tends to rise. When risk factors driving loan books are
diverse, market concentration increases and persists as the large members further
increase in size. Hedging, while risk-mitigating on an individual level, contributes
to the emergence of size externalities on the systemic level. We develop a systemic
risk charge mechanism to let members internalize these externalities.

The systemic risk charge is a self-financing charge, enforced by the CCP and directed
by the regulator, to limit concentration risk. It consists of two parts. The first is a fee,
different for each member, which is proportional to the size of the member’s margin
trading account at the CCP. The second is a rebate, the same for each member, and
which relates to the aggregate margin trading account across clearing members at the
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CCP. Clearing members pay (or receive) to the extent the fee is greater (or lesser) than
the rebate. Large clearing members are expected to be net financiers of the systemic risk
charge, while smaller clearing members are expected to be net recipients. The regulator
controls the fee through a systemic risk charge policy rate, which determines to what
extent and how quickly concentrations across clearing members may reduce.

Our model provides testable predictions regarding the relation between hedging
strategies of market participants, their business operations, and market collateral de-
mand. These relations can assist regulators to detect structural changes in members’
behavior and to analyze the impact of preventive policies aiming at financial stability.
For example, our framework helps the regulator assess whether a certain member is being
too aggressive in risk-taking compared to its peers. This can be achieved by contrasting
the member’s realized trade ratio to our model’s equilibrium trade ratio.

Our model identifies important risks regarding the growth of central clearing. While
financial regulatory reform has promoted central clearing, in the course of this devel-
opment, CCPs may become exposed to too-big-to-fail clearing members. The cost of
externalities introduced under central clearing could exceed the hedging benefits associ-
ated with it.

While the model put forward in this paper analyzes systemic risk dynamics under
central clearing, it can also be embedded in a structural credit risk framework to analyze
default risk of financial institutions. The continuous time asset value process implied by
our model can be used to obtain dynamics of default probabilities, and aid the estab-
lishment of dynamic capital requirements. Additionally, our framework can be extended
to examine systemic implications under different behavioral trading assumptions. For
instance, when retail investors trade on a futures exchange for speculation rather than
hedging risk, the equilibrium allocation would no longer be determined by the hedge
equations. Nevertheless, the component of our model describing profits and losses from
centrally cleared trading is invariant to the specific trading purpose, and can be used in
conjunction with a variety of trading behavioral models. We leave the construction of
such a comprehensive framework for future research.

A The concentration effect from trading

In this appendix we show that (i) when reallocation is not allowed, the variation margin
buffer dynamics converge to the I−allele neutral Wright-Fisher diffusion process, and
that (ii) the volatility structure of the trade account value dynamics given in Eq. (1.3)
is naturally associated to that of the Wright-Fisher diffusion process.

We consider the case where members do not choose their allocations due to hedging
needs. Rather, they choose allocations so that their new variation margin buffers are
the same as the residual variation margin buffers after accounting for variation margin
payments. This “hands-off” case allows us to isolate the effects of trading, as members
do not actively change capital allocations due to losses. Using the same notation as in
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section 1.1.2, and setting t = k∆t, k ∈ N, we have:

Vi((k + 1)∆t) = Vi(k∆t) +R(k∆t+ ∆t).

Notice that for all k, the aggregate trade account value V (k∆t) = V (0), since there is no
withdrawal or infusion of capital into trading. Consider the normalized variation margin

(N)
buffer processes vi (k∆t) := V (0)−

∑
1 I (N)
Vi(k∆t). We then have that i=1 vi (k∆t) = 1

for all k.

v
(N)
i ((k + 1)∆t) =

Vi((k + 1)∆t)
=
Ni((k + 1)∆t)× V (0)/N

=
Ni(k∆t+ ∆t)

.
V (0) V (0) N

(A.1)

(N) (N)
Notice that Eq. (1.2) and Eq. (A.1) together show that Y := N×(v1 , . . . , vI ) follows
an I−allele Wright-Fisher Markov Chain model (Feller et al. (1951)), which has a well

d
known diffusive limit: (2N)−1Y(b2Ntc)→ p(t), where p(t) is referred to as the I-allele
Wright-Fisher diffusion process (Guess (1973)). For a precise definition of the process,
see theorem A.2 and its associated proof.

An important feature of this process is fixation, defined as the stopping time

τ := min
t
{pi(t) = 0, for all but one i = 1, . . . , I}.

It is well known that E[τ |p(0) = p0] <∞ (Guess (1973)). That is, the process moves to-
wards a state of absolute concentration where η(V) = 1. When reallocation is prohibited,
the trade accounts become highly concentrated over time. This is the “concentration
effect” of trading.

Next, we show that the volatility structure of the trade account value dynamics
coincides with the one of the∑Wright-Fisher diffusion process. Let ∆I−1 := {x ∈
RI−1 I−1|xi ≥ 0, i = 1 . . . I − 1, i=1 xi ≤ 1} and δi,j be the Kronecker delta function.
Let x = (x1, . . . , xI) ∈ RI+, where the subscript + denotes the nonnegative orthant.∑IDenote x̃ := maxi xi and x̄ := i=1 xi. Notice that x̃ ≤ x̄, with equality if and only if
I−1 components of x are zero. Define the matrix-valued function Σ(x) : RI+ → RI ×RI
as:

Σi,j(x) =
δi,j − (1− δi,j) xi

x̄−xi
xj

x̄−xj , x̃ < x̄

0, x̃ = x̄
.

{ √
(A.2)

One can easily show that if G is a random variable following a multinomial distribution
with parameters (n, V ), then Σ(V) is the correlation matrix of G. Although the I-V
allele Wright-Fisher diffusion has been well studied, to the best of our knowledge it has
always been characterized in terms of its infinitesimal generator. Since we need the SDE
representation in our discussion, we present our own proof. We start with the following
proposition showing that the market clearing conditions are satisfied when Σ is given
by Eq. (A.2).
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Proposition A.1. For any nonnegative I−dimensional process X, we have

I∑
i=1

√
Xi(t)(X̄(t)−Xi(t))dW

Σ
i = 0 (A.3)

The above proposition plays a crucial role in the proof of the SDE representation of
the Wright-Fisher diffusion process:

Proposition A.2. Let p(t) be a I-allele Wright-Fisher diffusion process with initial
value p(0) = p0. Then p(t) is the unique weak solution to the SDE{

dX(t) =
√

X(t) ◦ (1−X(t)) ◦ Γ(X(t))dB(t)

X(0) = p0

. (A.4)

Here Γ(x) is the unique matrix such that Γ2(x) = Σ(x), and B is a I− dimensional
standard Brownian motion.

We next give the proof for the discretized version of the market clearing condition,
given in Eq. (1.11), and used in the construction of the equilibrium allocation profile in
Section 1.2.2:

Proposition A.3. For any nonnegative I−dimensional process X, we have

I∑
i=1

√
Xi(tm)(X̄(tm)−Xi(tm))ZΣ

i,n+1 = 0 (A.5)

All proofs of the above propositions are reported in appendix B.
Last, we discuss the role of σ′−2 := N∆t. σ′ is essentially a time change parameter

that allows us to scale the trade account value dynamics depending on the target time
frame (hourly, daily, weekly. . . , etc). To see this, suppose that for some reference time

′ − ′ d
frame t , we have (2N) 1Y(b2Nt c) → p(t′) . The dynamics of Vi(t) under the time
change t = 1

σ′2 t
′ are obtained as follows. First

Vi(t) = pi(t)V
t′

σ′2
= pi(t)V (0).

( )
and thus, since σ′B(t) is a Brownian motion the original time t′,{

dV(t) = σ′ V(t) ◦ (V 1−V(t)) ◦ Γ(V(t))dB(t)

V(0) = V0

.

√
(A.6)

∫ t
Notice that Γ(V(s))dB(s) is a correlated Brownian motion with instantaneous corre-0
lation matrix Σ(V(t)).
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B Proofs
2

Proof of Theorem 1. For notational convenience, we define the quantity δ := σ > 0. In addition,
θ2ρ2

since we are considering a fixed instant in time, we will suppress all time arguments tm. Without loss
of generality, we assume that the sequence of asset values is in decreasing order, i.e. A1 ≥ A2 ≥ · · · ≥
AI > 0.

Notice that the hedge equations in (1.12) may be written in three equivalent forms: for i = 1, . . . , I,

1.

(Ai −Mi)
2 = δMi

j=i

Mj ,
∑
6∏˜ ˜ ˜whose solution is denoted by (M1,M2, . . . ,MI) ∈ I

i=1[0, Ai].

2. {
(Ai −Mi)

2 = δMi(M −Mi),

M =
∑I
i=1Mj ,

(B.1)

∏
whose solution is denoted by (M∗,M∗1 ,M

∗ ∑
2 , . . . ,M

∗
I ) ∈ [0, A]× I

i=1[0, Ai], where A := I
i=1Ai.

3.

(1− κi)2Ai = δκi
∑
j=i

κjAj ,
6

(B.2)

whose solution is denoted by (κ∗, κ∗, . . . , κ∗ I
1 2 I) ∈ [0, 1] .

The second form follows from the first after introducing the slack variable M . The third form follows
from the first form by using the relation Mi = κiAi. Obviously, there is a one-to-one correspondence
between solutions of each form.

We prove existence using the representation in (B.2) and then uniqueness using the representation
in (B.1). ∑
Proof of Existence. Let x := (x1, x2, . . . , xn) and define Ui(x) := xjAj ≥j=i 0. Applying the

quadratic formula to Eq. (B.2), we can solve for
6

κi = 1 +
δUi(κ)

2Ai
±

√(
1 +

δUi(κ)

2Ai

)2

− 1.

In other words, if we define

ψ(x) := (ψ1(x), ψ2(x), . . . , ψn(x)),

ψi(x) := 1 +
δUi(x)

2Ai
−

√(
1 +

δUi(x)

2Ai

)2

− 1, (B.3)

then any x∗ ∈ [0, 1]I such that ψ(x∗) = x∗ must be a solution of Eq. (B.2). For any x ∈ [0, 1]I , Ui ≥ 0,
and obviously ψi(x) ≥ 0 from Eq. (B.3). We also have that ψ(x) ≤ 1 since we can rewrite Eq. (B.3) as

ψi(x) = 1 +
δUi(x)

2Ai
−

(
δUi(x)

2Ai

)2

+
δUi(x)

Ai
.

√

Thus φ is a continuous mapping from [0, 1]I to [0, 1]I , and by applying Brouwer’s fixed-point theorem
there exists x∗ ∈ [0, 1]I such that φ(x∗) = x∗.
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Proof of Uniqueness. Since we have established the existence of a solution to Eq (B.2), there must
also exist a solution to Eq (B.1). Here show that the solution of Eq. (B.1) is unique.

We first observe that, given a solution M∗ := (M∗,M∗1 ,M
∗
2 , . . . ,M

∗
I ) to the system of equa-

tions (B.1), it must be the case that either Mi = f−i (M) or Mi = f+
i (M), where

f−i (y) :=
2Ai + δy −

√
(2Ai + δy)2 − 4A2

i (δ + 1)

2(1 + δ)
, (B.4)

f+
i (y) :=

2Ai + δy + (2Ai + δy)2 − 4A2
i (δ + 1)

2(1 + δ)
.

√
(B.5)

This can be directly seen by solving the first equation in (B.1) using the quadratic formula.
Next, we define two classes of solutions. A solution M∗ is of Class I if it has the functional form

(M∗, f+
1 (M∗), f−2 (M∗), . . . , f−I (M∗)),

while it is of Class II if it has the functional form

(M∗, f−1 (M∗), f−2 (M∗), . . . , f−I (M∗)).

The proof of uniqueness consists of four steps:

Step 1. All feasible solutions must either be of Class I or Class II
In this step we prove three auxiliary lemmas, B.1–B.3. These are used to prove Lemma B.4, which

shows that all feasible solutions must be either of Class I or Class II.

Lemma B.1. It holds that for each i = 1, . . . , I, f+
i (y) is strictly increasing in y, while f−i (y) is strictly

decreasing in y. Moreover,

M∗ ≥M† :=
2A1

1 +
√

1 + δ
. (B.6)

Proof of Lemma B.1. Since

∂f+
i (y)

∂y
=

δ

2(1 + δ)
1 +

2Ai + δy√
(2Ai + δy)2 − 4A2

i (1 + δ)
> 0,

( )

it follows that f+
i (y) is strictly increasing in y. Moreover,

∂f−i (y)

∂y
=

δ

2(1 + δ)
1− 2Ai + δy√

(2Ai + δy)2 − 4A2
i (1 + δ)

< 0,

( )

which implies that f−i (y) is strictly decreasing in y. Since M∗i is real for each i, the discriminant of the
quadratic equation gives:

(2Ai + δM∗)2 − 4A2
i (δ + 1) ≥ 0,

which is equivalent to

M∗ ≥ 2Ai

1 +
√

1 + δ
.

Since the above upper bound must hold for each i = 1, . . . , I, we obtain{ }
M∗ ≥ max

i

2Ai

1 +
√

1 + δ
=

2A1

1 +
√

1 + δ
.

Lemma B.2. Suppose that M∗i = f+
i (M∗). Then M∗ ≤ Ai.
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Proof of Lemma B.2. The proof goes by contradiction. Assume M∗ > Ai. It can be immediately
verified that f+

i (Ai) = Ai. We know from Lemma B.1 that f+
i (y) is strictly increasing in y. Hence,

M∗i = f+
i (M∗) > f+

i (Ai) = Ai, leading to a contradiction since M∗i ∈ [0, Ai] by definition of a solution
of Eq. (B.1).

Lemma B.3. M∗i ≥M∗j if and only if Ai ≥ Aj.

Proof of Lemma B.3. First we show that M∗ ∗
i ∈ (0, Ai). If Mi = 0, plugging this into Eq. (B.1) gives

Ai = 0, a contradiction. If M∗i = Ai, the same equation gives M∗ = Ai = M∗i , which implies M∗j = 0
for j = i, leading again to a contradiction.

Since Ai > Mi, we can rewrite Eq. (B.1) as
6

Ai = M∗i +
√
δ −

(
M∗

2
−M∗i

)2

+
M∗2

4
.

√
Define the function

a(y) := y +
√
δ − M∗

2
− y

2

+
M∗2

4
.

√ ( )
∗

Then it is obvious that a(y) is strictly increasing on (0, M ).
2∗ ∗ ∗

Suppose M∗ > M∗. Then it must hold that M ≤ M ∗ ∗ ∗ M M ∗
i j j otherwise M ≥M

2 i +Mj > + = M ,
2 2∗

which is a contradiction. Next, we consider two separate cases. Suppose first that M∗i ≤ M . Then
2∗

Aj = a(M∗j ) < a(M∗i ) = Ai. Next, suppose that M∗i > M . Then for all j = i, M∗j < M∗ −M∗
2 i <

∗M < M∗
2 i . Thus

6

Aj = a(M∗j ) < a(M∗ −M∗i ) = M∗ −M∗i +
√
δ −

(
M∗

2
−M∗ +M∗i

)2

+
M∗2

4
< a(M∗i ) = Ai.

√
This concludes the proof of the “if” statement. The “only if” direction follows by notational symmetry
and antisymmetry of the ≥ relation.

Lemma B.4. For i ≥ 2, it holds that M∗i = f−i (M∗). Thus, M∗ must be of either Class I or Class II.

Proof of Lemma B.4. Suppose, by contradiction, that there exists i ≥ 2 such that M∗ = f+(M∗i i ). From

Lemma B.2, we have that M∗ ≤ Ai. Thus

M∗
i = f+i (M∗) =

2Ai + δM∗ + (2Ai + δM∗)2 − 4A2
i (δ + 1)

2(1 + δ)
≥ 2M∗ + δM∗

2(1 + δ)
>
M∗

2

√
. (B.7)

∗ M∗By Lemma B.3, M∗
1 ≥M∗

i , thus M∗ ≥M∗ ∗ M ∗
i +M1 > + = M , which is a contradiction.2 2

Step 2. There is at most one solution of Class II
Recall M† defined in Eq. (B.6). We have the following∑

Lemma B.5. Define the function m−(y) := −y + I
i=1 f

−
i (y). There are no solutions of Class II if

and only if m−(M†) < 0. Moreover, there is exactly one solution of Class II if and only if m−(M†) ≥ 0.

Proof of Lemma B.5. By Lemma B.1, we only need to consider values of M∗ such that M† ≤M∗ ≤ A.
Notice that M∗ is a solution of class II if and only if y = M∗ is a solution of the equation

0 = −y +

I∑
i=1

f−i (y). (B.8)
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Hence we can focus on solut∑ ions to Eq. (B.8). We next show via a direct calculation that m−(A) < 0,
where we recall that A = I

ii=1A is the sum of members’ asset values. Since for x > z > 0 it holds that√ √ √
x− x− z < z, for any y > 0

f−i (y) =
2Ai + δy − (2Ai + δy)2 − 4A2

i (δ + 1)

2(1 + δ)
<

4A2
i (1 + δ)

2(1 + δ)
< Ai.

√ √
(B.9)

Therefore, we have ∑I ∑I
m−(A) = −A+ f−i (A) = (f−i (A)−Ai) < 0.

i=1 i=1

In addition,

∂m−(y)

∂y
= −1 +

I∑
i=1

∂f−i (y)

∂y
< 0

by Lemma B.1. Thus, the function on the right hand side of Eq. (B.8) has a strictly negative derivative
everywhere.

This implies that if m−(M†) ≥ 0 there must exist exactly one solution of Eq. (B.8) in [M†, A], since
m−(M†)m−(A) ≤ 0 and the derivative of m−(y) is strictly negative. Additionally, it implies that if
m−(M†) < 0 no solution can exist in [M†, A] since m−(M†)m−(A) > 0.

Step 3. There is at most one solution of Class I ∑
Lemma B.6. Define the function m+(y) := −y + f+

1 (y) + I
i=2 f

−
i (y). There are no solutions of

Class II if and only if m+(M†) > 0. Moreover, there is exactly one solution of Class II if and only if
m+(M†) ≤ 0.

Proof of Lemma B.6. By Lemma B.1 and B.2, for the case of class I solutions we only need to consider
values of M∗ such that M† ≤M∗ ≤ A1. Notice that M∗ is a solution of class I if and only if y = M∗ is
a solution of the equation

0 = −y + f+
1 (y) +

i=2

f−i (y).

I∑
(B.10)

Hence, we can restrict attention to solutions of Eq. (B.10). It can be directly verified that m+(y) is
twice continuously differentiable on (M†,∞). The proof of the result will be based on an analysis of the
second derivative of m+. First, we calculate the following derivatives:

∂2f−i (y)

∂y2
= 2δ2

A2
i(√

(2Ai + δy)2 − 4A2
i (1 + δ)

)3 .
∂2f+

1 (y)

∂y2
= −2δ2

A2
1(√

(2A1 + δy)2 − 4A2
1(1 + δ)

)3 .
∂m+(y)

∂y
=

δ

2(1 + δ)

(
1 +

2A1 + δy√
(2A1 + δy)2 − 4A2

1(1 + δ)
+

I∑
i=2

(
1− 2Ai + δy√

(2Ai + δy)2 − 4A2
i (1 + δ)

))
.

(B.11

∂2m+(y)

∂y2
= −2δ2

A2
1(√

(2A1 + δy)2 − 4A2
1(1 + δ)

)3 + 2δ2
I∑
i=2

A2
i(√

(2Ai + δy)2 − 4A2
i (1 + δ)

)3 . (B.12

)

)

Next, we show that:
2 +

(P1) lim ∂ m (y)
y→M† = −∞.

∂y2

To see this, we first show that A1 > A2. Suppose, by contradiction, that this is not the case,
i.e. A1 = A2. Then, by Lemma B.4, we would have that M∗1 = f+

1 (M∗) ≥ f−1 (M∗) = M∗2 .
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The inequality would be strict unless M∗ = M†. However, the strict inequality contradicts the
statement of Lemma B.3. On the other hand, equality also leads to a contradiction since it would

∗
yield M∗ = M∗ > M

1 2 (see Eq. (B.7)). Thus 2A1 > 2A√ √ i for all i ≥ 2. Recalling the
2 1+ 1+δ 1+ 1+δ

definition of M† given in (B.6), this leads to (2A + δM†)2 − 4A2 2A√ i 2
i i (1 + δ) > (2Ai + δ ) −

1+ 1+δ

4A2
i (1 + δ) = 0 for i ≥ 2. Moreover, it leads to (2A1 + δM†)2 − 4A2

1(1 + δ) = 0. Next, we take
the limit of the expression in (B.12) and obtain the result.

+

(P2) lim ∂m (y)
y→M† =∞.

∂y

Using the same arguments in (P1), the result follows directly after taking the limit of the expression
in (B.11).

+ −
f (y) f (y)

(P3) lim 1 δ i
y→∞ = < 1 and limy→∞ = 0.

y 1+δ y

The first limit follows directly from the expression of f+
1 given in Eq. (B.5). The second limit

follows immediately upon rewriting Eq. (B.4) in the equivalent form

f−i (y) =
A2
i

2Ai + δy +
√

(2Ai + δy)2 + 4A2
i (δ + 1)

.

(P4) limy→∞m
+(y) = −∞.

+ − + −
+ f (y) f (y) f (y) f (y)

We can write m (y) = y(−1+ 1 + i ), and note that by (P3), limy→∞−1+ 1 + i =
y y y y

−1 + δ + 0 < 0.
1+δ

(P5) m+(A ) > 0. By definition of m+ m+ ∑
1 (y), we have that (A1) = −A + f+

1 1 (A I
1) + i=2 f

−
i (A1) =∑

−A1 +A1 + I
i=2 f

−
i (A 11

1) > 0.

Combining (P1) and (P2) above, we deduce that the function m+(y) is concave and increasing at
2 + 2 +

M†. The concavity of m+ can only change if ∂ m (y) = 0. Using Eq. (B.12), ∂ m (y)

∂y2
= 0 if and only if

∂y2

g(y) = 0, where

g(y) :=−A2
1 +

I∑
i=2

(
(2A1 + δy)2 − 4A2

1(1 + δ)

(2Ai + δy)2 − 4A2
i (1 + δ)

)3/2

A2
i

:=−A2
1 +

I∑
(hi(y))3/2A2

i .
i=2

Using straightforward algebraic manipulations, we obtain

hi(y) =
(2A1 + δy)2 − 4A2

1(1 + δ)

(2Ai + δy)2 − 4A2
i (1 + δ)

= 1 +
(2A1 + δy)2 − 4A2

1(1 + δ)− (2Ai + δy)2 + 4A2
i (1 + δ)

(2Ai + δy)2 − 4A2
i (1 + δ)

= 1 +
4(A1 −Ai)(A1 +Ai + δy)− 4(A1 +Ai)(A1 −Ai)(1 + δ)

(2Ai + δy)2 − 4A2
i (1 + δ)

= 1− 4δ(A1 −Ai)
(A1 +Ai)− y

(2Ai + δy)2 − 4A2
i (1 + δ)

.

(B.13)

Notice that for y ∈ [0, A1 +Ai], (A1 +Ai)−y is strictly decreasing in y and (2Ai+ δy)2−4A2
i (1 + δ)

strictly increasing in y. Thus (A1+Ai)−y is strictly decreasing in y. Since A1 > Ai, this implies
(2A 2−4A2

i+δy) (1+δ)i

that hi(y) is strictly increasing in y for y ∈ [0, A1 + Ai]. Thus, g(y) is increasing in y on the interval
[0, A1 + mini{Ai}] = [0, A1 +AI ] ⊇ [0, A1]. In this interval, there can be at most one point M0 such that
g(M0) = 0. In other words, the concavity of m+(y) can change at most once on the interval [0, A1].

Now, we consider two cases.

11Recall that f−(y) is positive for all y since 2Ai + δy > (2Ai + δy)2 − 4A2(1 + δ).i

√
i
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• Case 1: the concavity of m+(y) does not change on the interval (M†, A1]. Then m+(M) is
strictly concave on (M†, A1], since the function is concave and increasing near M† by virtue of
(P1) and (P2). Then, since m+(A1) > 0 by (P5), there must be a real value M∗ ∈ [M†, A1] such
that m+(M∗) = 0 if m+(M†) ≤ 0. There can be no solution if m+(M†) > 0. We refer the reader
to figure 3 for a graphical illustration.

Figure 3: The case when m+(y) does not change its concavity in (M†, A1] . There is exactly one
solution if m+(M†) ≤ 0, and there is no solution if m+(M†) > 0.
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• Case 2: the concavity of m+(y) changes exactly once on the interval (M†, A1]. Then there exists
2 +

a real value M0 ∈ (M†, A1] such that g(M0) = 0 and ∂ m (M) m+
2 = 0. Hence, (y) is concave on

∂M

(M†,M0] and convex on [M0, A1].

Recall that, for i = 1, . . . , I, hi(y) is strictly increasing in y in the region (M†, A1 + Ai). This
implies that g(y) > g(M0) = 0 for all y ∈ [M0, A1 + AI ]. In addition, for y > A1 + Ai, using the
expression for hi given in Eq. (B.13) we deduce

hi(y) = 1− 4δ(A1 −Ai)
(A1 +Ai)− y

(2Ai + δy)2 − 4A2
i (1 + δ)

> 1 = hi(A1 +Ai).

Thus, for y ∈ [A1 +AI ,∞)

g(y) = −A2
1 +

i=2

(hi(y))3/2A2
i ≥ −A2

1 +
i=2

hi(A1 + min
i
Ai)

3/2

A2
i

> −A2
1 +

I∑
i=2

(hi(A1 +AI))
3/2A2

i > −A2
1 +

I∑
i=2

(hi(M0))3/2A2
i = g(M0) = 0.

I∑ I∑( )

Above, the second inequality follows from the fact that for each i, hi(y) is strictly increasing on
y ∈ [M0, A1 + AI ]. Combining the analysis of the function g(y) on both intervals (M†,M0] and

2 +

[M0, A1], we deduce that for y ∈ (M†,∞), ∂ m (y)
2 = 0 only at y = M0.

∂y

Next, we distinguish two subcases:

– m+(M†) ≤ 0. Since m+(A1) ≥ 0 by (P5), m+(y) is continuous, and the concavity of m+(y)
changes exactly once, Eq. (B.10) can only have either one or three solutions. We rule out
the case of three solutions using the following argument. Suppose by contradiction that
there exist three solutions s1, s2, s3 ∈ [M†, A1]. Then it must be the case that m+(y) < 0
in the interval (s2, s3). Thus m+(y) is not only convex but also increasing in the region
(s3, A1]∩ (M0, A1]. Since the concavity of m+(y) cannot change in [A1,∞), this contradicts
(P4). We also refer the reader to figure 4 for a graphical illustration.
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Figure 4: The case when m+(y) changes its concavity exactly once on (M†, A1] and m+(M†) ≤ 0.
There can only be one solution to m+(y) = 0. Existence of three solutions contradicts (P4).
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– m+(M†) > 0. Again, since the concavity of m+(y) changes exactly once, there can be
either zero or two solutions to Eq. (B.10) in the interval [M†, A1]. We rule out the case of
two roots via the following argument. Suppose there exists two solutions s1, s2 ∈ [M†, A1].
Then it must be the case that m+(y) < 0 if y ∈ (s1, s2), thus m+(y) is not only convex
but also increasing in the region (s2, A1] ∩ (M0, A1]. Since the concavity of m+(y) cannot
change in [A1,∞), this contradicts (P4). We also refer the reader to figure 5 for a graphical
illustration.

Figure 5: The case when m+(y) changes its concavity exactly once in (M†, A1] and m+(M†) ≤ 0.
There cannot be any solution of the equation m+(y) = 0. The two solutions case contradicts (P4).
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Step 4. The solution is unique.
We will show that class I and class II solutions are mutually exclusive, except for the case when they

coincide. Notice that m+(M†) = m−(M†). Hence, by lemmas B.5 and B.6, there exists one solution
which is of class I if m+(M†) < 0, and one solution which is of class II when m+(M†) > 0. The case
when m+(M†) = 0 means that M† is a solution which is both of class I and class II, because in this case
f+
1 (M†) = f−1 (M†). In this case, the solution is still unique.

Combining the proof of existence and uniqueness, we have completed the proof of Theorem 1.
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√
Proof of Proposition 2.1. Let πi := θ 1− ρ2(1− κ∗i ), we may rewrite Eq. (1.14) as{

dAi = φAidt+ πiAidWi

dA = φAdt+
∑I
i=1 πiAidWi

.

Application of Itô’s formula gives,

d
A2
i

A2
= 2πi

A2
i

A2
dWi − 2

A2
i

A3

I∑
j=1

πjAjdWj +
A2
i

A2
π2

i − 4
πi
A

I∑
j=1

πjAjΨi,j + 3
1

A2

I∑
j,k

πjπkAjAkΨj,k dt

=
A2
i

A2

(
πi − 2

∑I
j=1 πjAjΨi,j

A

)2

dt+
A2
i

A4

3

I∑
j,k

πjπkAjAkΨj,k − 4

(
I∑
j=1

πjAjΨi,j

)2
 dt

+ 2πi
A2
i

A2
dWi − 2

A2
i

A3

I∑
j=1

πjAjdWj .

 

√ ∑
Since πi ≤ θ 1− ρ2 and A = I

j=1Aj , all coefficients of the Itô integral terms are bounded. Thus
2A

all Itô integral terms are martingales. To show that i
2 is a submartingale, it suffices to show that the

A

following inequality holds:

0 < 3

I∑
j,k

πjπkAjAkΨj,k − 4

I∑
j=1

πjAjΨi,j

2

= 3

I∑
j=1

π2
jA

2
j + 3

I∑
k=j

πjπkAjAkψjψk − 4π2
iA

2
i − 4ψ2

i

∑
j=i

ψ2
jπ

2
jA

2
j − 4ψ2

i

I∑
j=k

πjπkAjAkψjψk.

( )

6 6 6

√
Since 0 ≤ ψ2

i ≤ 1√ < 3 , we have
2 2

3π π A A ψ ψ − 4ψ2
j k j k j k i πjπkAjAkψjψk > 0.

2

Using the relation π2
iA

2
i = σ2 1−ρ

2 κ∗iAi j=i κ
∗
jAj implied by Eq. (1.12) , we have

ρ

∑
6

3

I∑
j=1

π2
jA

2
j − 4π2

iA
2
i − 4ψ2

i

∑
j=i

ψ2
jπ

2
jA

2
j

= σ2 1− ρ2

ρ2

3
∑
j=k

κ∗jκ
∗
kAjAk − 4Aiκ

∗
i

∑
j=i

κ∗jAj − 4ψ2
i

∑
j=i

ψ2
jAjκ

∗
j

∑
k=j

κ∗kAk


≥ σ2 1− ρ2

ρ2

(
3
∑
j=k

κ∗jκ
∗
kAjAk − (4 +

4√
2
ψ2
i )Aiκ

∗
i

∑
j=i

κ∗jAj − 4ψ2
i

∑
j=k;j,k=i

Ajκ
∗
jκ
∗
kAk

)

= σ2 1− ρ2

ρ2

(
3

∑
j=k;j,k=i

κ∗jκ
∗
kAjAk − 4ψ2

i

∑
j=k;j,k=i

κ∗jκ
∗
kAjAk

+ 6Aiκ
∗
i

∑
j=i

κ∗jAj − (4 + 2
√

2ψ2
i )Aiκ

∗
i

∑
j=i

κ∗jAj

)
> 0.

6

6 6 6 6

6 6 6 6

6 6 6 6

6 6

2

Both of the above inequalities hold since 0 ≤ ψ2 ≤ 1 A√ i
i for all i. This shows that

2 A2 is a submartingale.
Since η is a sum of submartingales, it is also a submartingale.

Proof of Proposition 2.2. We start by proving the first statement. Using the functional forms of
class I and class II solutions given in equations (B.4) and (B.5), we consider the following two cases.
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Case 1 : The unique solution is of class I or i, j > 1. Then, for k = i, j we can write

κ∗k =
f−(M)

Ak
=

2 + δ M
Ak
− (2 + δ M

Ak
)2 − 4(δ + 1)

2(1 + δ)
=

2

2 + δ M
Ak

+
√

(2 + δ M
Ak

)2 − 4(δ + 1)
,

√

which is clearly increasing in Ak. Thus κ∗i ≥ κ∗j if and only if Ai ≥ Aj .
Case 2 : The unique solution is of class II and i = 1, j > 1. Without loss of generality, let

A1 = maxiAi. Then

κ∗1 =
f+(M)

A1
=

2 + δ M
A1

+ (2 + δ M
A1

)2 − 4(δ + 1)

2(1 + δ)
≥

2 + δ M
A1
− (2 + δ M

A1
)2 − 4(δ + 1)

2(1 + δ)

≥
2 + δ M

Aj
−
√

(2 + δ M
Aj

)2 − 4(δ + 1)

2(1 + δ)
= κ∗j .

√ √

Thus κ∗1 ≥ κ∗j since we have A1 > Aj .
Next, we prove the second statement. If Ai > Aj , using the result proven above, we have

Mi −Mj

Ai −Aj
=
κ∗iAi − κ∗jAj
Ai −Aj

>
κ∗iAi − κ∗iAj
Ai −Aj

= κ∗i ,

and
Mi −Mj

Ai −Aj
=
κ∗iAi − κ∗jAj
Ai −Aj

>
κ∗jAi − κ∗jAj
Ai −Aj

= κ∗j .

This concludes the proof of the proposition.

Proof of Proposition 2.3. We consider the two cases separately.

• δ = 1. Solving Eq. (1.12) using the quadratic formula, we obtain6

κ∗1 =
δ − δA2

A1
− 2±

(
δ − δA2

A1
− 2
)2

+ 4(δ − 1)

2(δ − 1)
,

κ∗2 =
δ − δA1

A2
− 2±

√(
δ − δA1

A2
− 2
)2

+ 4(δ − 1)

2(δ − 1)
.

√

In order to have 0 ≤ κ∗1, κ∗2 ≤ 1, we must either take the root of each equation with the plus sign,
or with the minus sign. We now show that the roots with the plus signs, denoted by κ+

1 , κ
+
2 , are

both in [0, 1].

If δ − δA2 − 2 ≥ 0, we must have δ ≥ 2. Then
A1

κ+
1 ≤

δ − 2 +
√

(δ − 2)2 + 4(δ − 1)

2(δ − 1)
= 1.

If δ − δA2 − 2 < 0, then
A1

1)
κ+ 4(δ −
1 = ( √ )∣ ∣ ( )∣ ∣ 2

2(δ − 1) ∣δ − δA2 − 2
1

∣+ δ − δA2 − 2 + 4(δ − 1)
A A1

=
2

x+
√
x2 + 4(δ − 1)

,

(B.14)

∣∣ ∣
where x = ∣δ − δA2 − 2∣ = −δ + δA2 + 2 ≥ 0. Set y = A2 . Differentiating x + x2 + 4(δ − 1)

A1 A1 A1

with respect to y we have:

∣ √
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∂(x+
√
x2 + 4(δ − 1))

∂y
= δ +

xδ√
x2 + 4(δ − 1)

> 0.

Next, view κ+
1 := κ+

1 (y) as a function of y. Since the derivative is always nonzero, the extrema of
κ+
1 (y) can only occur at the boundaries when y = 0, y =∞, or δ− δy− 2 = 0 (that is, y = δ−2 ).

δ

Notice that the last case is only relevant when δ ≥ 2. We have

κ+
1 (y)|y=0 =

2

(−δ + 2) +
√

(δ − 2)2 + 4(δ − 1)
= 1.

κ+
1 (y)|y=∞ = 0.

κ+
1 (y)|

y= δ−2
δ

=
2√

4(δ − 1)
=

1√
δ − 1

≤ 1.

The last inequality holds since we are considering the case where δ ≥ 2. Thus, 0 ≤ κ∗1 ≤ 1.

An analogous argument shows that 0 ≤ κ∗2 ≤ 1. Since (κ∗ ∗
1, κ2) is a solution and the solution is

unique, this means that the solution is given by (κ+
1 , κ

+
2 ). The monotonicity statement follows

immediately by differentiating the expressions of κ+
1 and κ+

2 with respect to A1 .
A2

• δ = 1. Solving the hedge equations in (1.12) directly gives the first equality in (2.4) and (2.5).
Next, we prove the second equality. Notice that when δ < 2, we have that δ− δA2 − 2 < 0. Using

A1

Eq. (B.14), we then have

lim
δ→1

κ+
1 (δ) =

2

2A2
A1

+ 2
=

A1

A1 +A2
.

A similar argument can be used to prove the second equality in (2.5).

Proof of Proposition 2.4. Applying Itô’s formula as in the proof of Proposition 2.1, we have

dη = d

I∑
i=1

A2
i

A2
= 2U

I∑
i=1

(
Ai
A2

dt− I A
2
i

A3
dt

)
+

I∑
i=1

(
2πi

A2
i

A2
dW d

i − 2
A2
i

A3

I∑
j=1

πjAjdW
d
j + π2

i
A2
i

A2
dt

− 4πi
A2
i

A3

I∑
j=1

πjAjψi,jdt+ 3
A2
i

A4

I∑
j,k

πjπkAjAkψj,kdt

)
.

(B.15)

Notice that only the first term in Eq (B.15) depends on U . It holds that

U

I∑
i=1

(
Ai
A2
− I A

2
i

A3

)
=

U

A3

I∑
i=1

(
AiA− IA2

i

)
=
U

A
(1− Iη).

Since η(t0) > 1 , for any bounded continuous process U satisfying
I

U(t0) ≥
A π2

i
A2
i

A2 − 4πi
A2
i

A3

∑I
j=1 πjAjψi,j + 3

A2
i

A4

∑I
j,k πjπkAjAkψj,k

Iη − 1

∣∣∣∣∣
t0

,

( )

we obtain the inequality in (2.6).

Proof of Proposition 3.1. Proceeding as in the proof of Proposition 2.1 and using Eq. (3.4), we have{
dAi = φAidt+ πiAidWi − µ κ∗iAi − M

I
dt,

dA = φAdt+
∑I
i=1 πiAidWi.

( )
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Then

d
A2
i

A2
= 2πi

A2
i

A2
dWi − 2

A2
i

A3

I∑
j=1

πjAjdWj + π2
i
A2
i

A2
dt

− 4πi
A2
i

A3

I∑
j=1

πjAjψi,jdt+ 3
A2
i

A4

I∑
j,k

πjπkAjAkψj,kdt

− 2
Ai
A2

µ

(
κ∗iAi −

M

I

)
dt,

and

dη = d

I∑
i=1

A2
i

A2

=

I∑
i=1

(
2πi

A2
i

A2
dWi − 2

A2
i

A3

I∑
j=1

πjAjdWj + π2
i
A2
i

A2
dt

− 4πi
A2
i

A3

I∑
j=1

πjAjψi,jdt+ 3
A2
i

A4

I∑
j,k

πjπkAjAkψj,kdt

)

− 2
µ
2

I∑(
κ∗iAi −

M
)
Aidt.

A
i=1

Above, all coefficients of the Itô integral terms∑ are bounded and thus the Itô integral terms are mar-
tingales. By Proposition 2.2, the quantity I (κ∗A − M

i i i i=1 )A is positive as long as not all firm values
I ∑

are equal (the fully diversified case). This can be easily seen by viewing 1 I
I i=1(κ∗iAi − M )Ai =

I
1
∑I ∗
i=1(κiAi − κ∗A)Ai as a sample covariance estimate. Here, κ∗A is the sample mean of the set

I

{κ∗iAi}Ii=1. Since κ∗iAi is increasing in Ai by Lemma B.3, the sample covariance estimate must be pos-
itive. In addition, the terms in the first summation in Eq. (B.16) are independent of µ. Thus, if µ is a
bounded continuous process such that

I

(B.16)

µ(t0) >

(
π2
iA

2
i − 4πi

A2
i
A

∑I
j=1 πjAjψi,j + 3

A2
i

A2

∑I
j,k πjπkAjAkψj,k

)
2
∑I
i=1

(
κ∗iAi − M

I

)
Ai

∣∣∣∣∣
t0

,

we have the inequality in (3.5)

Proof of Proposition A.1. First we show that for all x ∈ RI+, Σ(x) is positive∑semidefinite, by showing
that all the principal minors are nonnegative. Recall, x̃ := max I

i xi and x̄ := i=1 xi. The statement
is obvious if x̃ = x̄. Now suppose x̃ < x̄. Consider any m × m principal submatrix of Σ(x). Due to
notational symmetry, we can assume without loss of generality that it is the leading m ×m principal
submatrix Σm(x). Based on straightforward row and column operations, we have:

det(Σm(x)) = x̄m−1
I∑

n=m+1

xn

m∏
n=1

(x̄− xn)−1 ≥ 0.

Moreover, by setting m = I, we see that det(Σ(x)) = 0. Since Σ(x) is positive semidefinite, there exists
a unique positive semidefinite matrix Γ(x) such that Σ(x) = Γ2(x), its principal square root.

Let
w(x) := (w1(x), . . . , wI(x)), (B.17)

where wi(x) := xi(x̄− xi) and define Z as
√

Z(t) :=
t

0

I∑
i=1

Xi(s)(X̄(s)−Xi(s))dWΣ
i (s) =

t

0

w(X(s))Γ(X(s))dB(s),

∫ √ ∫
(B.18)
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− ¯ ˜where B(s) is I dimensional standard Brownian motion. If X(t) = X(t), we have L(X(t)) = 0 and
Z(t) = 0. Otherwise, we observe that Z(t) has zero quadratic variation:

d[Z,Z](t) =  I∑
i=1

w2
i (X(t))−

I∑
i=j

Xi(t)Xj(t) dt = 0.


6



Since Z has the representation given by Eq. (B.18), we can also write

[Z,Z](t) =
t

0

(w(s)Γ(s))(w(s)Γ(s))T ds

∫
Therefore having zero quadratic variation means w(s)Γ(s) = 0 almost everywhere, which means Z(t) =
0. This completes the proof of the statement.

Proof of Proposition A.2. It is well known that the I-allele Wright-Fisher diffusion process is uniquely
characterized by ∑

1. pI(t) = 1− I−1
i=1 pi(t) for all t.

2. For any f ∈ C2(∆I−1), p(t) is the unique solution to the martingale problem

f(p(t))−
t

0

Lf(p(s)) ds is a martingale,

Lf(x) =
1

2

I−1∑
i,j=1

xi(δi,j − xj).

∫

Now suppose X(t) is a weak solution to the SDE{
dX(t) =

√
X(t) ◦ (X̄(t)1−X(t)) ◦ Γ(X(t))dB(t)

X(0) = p0
. (B.19)

∑
Thus I ∑

X I I
i(t) is constant by proposition A.1. Since I ∑ ∑

Xi(0) = p0,ii=1 i=1 i=1 = 1, i=1Xi(t) = 1 for
all t. In other words, we can rewrite Eq. (B.19) as

dXi(t) =
√
Xi(t)(1−Xi(t))

∑I
k=1 Γi,kdBk(t), i = 1 . . . , I − 1

XI(t) = 1−
∑I−1
i=1 Xi(t)

X(0) = p0

. (B.20)

Notice that the associated infinitesimal generator for f ∈ C2(∆I−1) is

LXf(x) =
1

2

I−1

i,j=1

I

k=1

√
xj(1− xj)xi(1− xi)Γi,kΓj,k

∂2f

∂i∂j
(x)

=
1

2

I−1∑
i,j=1

√
xj(1− xj)xi(1− xi)Σi,j

∂2f

∂i∂j
(x)

=
1

2

I−1∑
i,j=1

xi(δi,j − xj)
∂2f

∂i∂j
(x),

∑ ∑

which is the same as the infinitesimal generator defining the I-allele Wright-Fisher diffusion process.
Thus, p(t) is the unique weak solution to Eq. (B.20). Thus it is also the unique weak solution to the
equivalent formulation Eq. (A.4).

37



Proof of Proposition A.3. Using the same notation as in the proof of Proposition A.2, write

ZΣ
n+1 = Γ(X(tm))Dn+1

Dn|Ftm ∼ N (0,I ∆t)

Define

U(tm+1) :=

I∑
i=1

Xi(tm)(X̄(tm)−Xi(tm))ZΣ
i,n+1 = w(X(tm))Γ(X(tm))Dn+1.

√
Then

E[U2(tm+1)|Ftm ] = E[w(X(tm))Γ(X(tm))Dn+1D
T
n+1Γ(X(tm))wT (X(tm))|Ftm ]

= w(X(tm))Σ(X(tm))wT (X(tm))∆t = 0,

where we have used that Γ is symmetric. The last equality follows by a direct calculation using the
expression for w given in Eq. (B.17) and of Σ given in Eq. (A.2). Since U(tm+1) has zero variance,
it must be constant, which means that w(X(tm))Γ(X(tm))Dn+1 is constant. Since the components of
Dn+1 are independent, this means that w(X(tm))Γ(X(tm)) = 0 and U(tm+1) = 0.
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