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Abstract

The degree of correlation among stock returns affects the possibility to diversify the risk of investment,
and it plays a major role in financial spillover. During the last decade, the increasing level of correlation
observed in financial markets has become a threat to market stability. Here, we analyze high frequency
data of stock returns traded at the New York Stock Exchange in the periods 2001-03 and 2011-13. In
each period we uncouple the factors contributing to the intraday pattern of synchronous correlations,
including volatility, autocorrelations and lagged cross-correlations among assets. We find that intraday
market dynamics have changed considerably in the last decade, and relate our findings to the dynamics
of an underlying network of lead-lag relationships among equities. In particular, while in 2001-03 lagged
cross-correlations contributed significantly to the intraday correlation profile, the increased degree of
synchronous correlation observed in the period 2011-13 can be associated with the presence of many
significant auto-correlations, especially at the end of a trading day, with a stronger coupling between
auto-correlations and lagged cross-correlations of returns. The presented method of data analysis could
be used to inform policy makers and financial institutions about market efficiency and risk of financial
spillover, and could also be helpful for portfolio management.

Keywords: Financial markets, Correlation analysis, Complex systems, Lagged correlations
JEL: G21, D85, N26, G18

1. Introduction

Filtering information out of vast multivariate datasets is a crucial step in managing and under-
standing the complex systems that underlie them. These systems are composed of many components,
the interactions among which typically induce larger-scale organization or structure. A major scientific
challenge is to extract insights into the large-scale organization of the system using data on its individual
components.

Financial markets are a primary example of a setting in which this approach has value. When
constructing an optimal portfolio of assets, for example, the goal is typically to allocate resources so as

∗Corresponding author email: chester.curme@googlemail.com (Chester Curme), dror.kenett@treasury.gov (Dror Y.
Kenett)

1The views and opinions expressed are those of the individual authors and do not necessarily represent official positions
or policy of the Office of Financial Research or the U.S. Treasury.

Preprint submitted to TBD August 12, 2015



to balance the trade-off between return and risk. As has been understood at least since the work of
Markowitz (1952), risk can be quantified by studying the co-movements of asset prices: placing a bet
on a single group of correlated assets is risky, whereas this risk can at least in part be diversified away
by betting on uncorrelated or anti-correlated assets. An understanding of the larger-scale structure of
co-movements among assets can be helpful, not only in the pursuit of optimal portfolios, but also in for
our ability to accurately measure marketwide systemic risks (Glasserman and Young, 2015; Kritzman
and Li, 2010).

Time series obtained by monitoring the evolution of a multivariate complex system, such as time
series of price returns in a financial market, can be used to extract information about the structural
organization of such a system. This is generally accomplished by using the correlation between pairs of
elements as a similarity measure, and analyzing the resulting correlation matrix. A spectral analysis of
the sample correlation matrix can indicate deviations from a purely random matrix (Laloux et al., 1999;
Plerou et al., 1999) or more structured models, such as the single index (Laloux et al., 1999). Clustering
algorithms can also be applied to elicit information about emergent structures in the system from a
sample correlation matrix (Mantegna, 1999). Such structures can also be investigated by associating
a (correlation-based) network with the correlation matrix. One popular approach has been to extract
the minimum spanning tree (MST), which is the tree connecting all the elements in a system in such
a way to maximize the sum of node similarities (Mantegna, 1999; Bonanno et al., 2003; Onnela et al.,
2003). Different correlation based networks can be associated with the same hierarchical tree, putting
emphasis on different aspects of the sample correlation matrix. For instance, while the MST reflects
the ranking of correlation coefficients, other methods, such as threshold methods, emphasize more the
absolute value of each correlation coefficient. Researchers have also aimed to quantify the extent to
which the behavior of one market, institution or asset can provide information about another through
econometric studies (Hamao et al., 1990), partial-correlation networks (Kenett et al., 2010, 2012) and
by investigating Granger-causality networks (Billio et al., 2012).

A network is defined as a set of nodes (such as people, companies, or airports), and links that connect
the nodes on the basis of interaction or relationship. Such links can be structural, such as well-defined
plane routes that connect airports. Alternatively, links can be functional, or derived using similarities
between the activities of two nodes, such as similarities in the number of travelers in two airports. Such
functional links can be derived using correlation measures, and correlation-based networks have been
found to be a very important tool for investigating real world systems Tumminello et al. (2010); Kenett
et al. (2010).

In the context of financial markets, the correlation matrix among asset returns is an object of
central importance in measuring risk. The filtering procedures described above may reveal statistically
reliable features of the correlation matrix (Laloux et al., 1999; Mantegna, 1999; Tumminello et al., 2010),
improving both our understanding of the nature of co-movements among assets in financial markets and
our ability to accurately measure risk. Much work has also been devoted toward developing more robust
measures of correlation that incorporate dynamics (Barndorff-Nielsen and Shephard, 2004; Lundin et al.,
1998), especially those dynamics described by intraday patterns in volume, price and volatility (Admati
and Pfleiderer, 1988; Ederington and Lee, 1993; Andersen and Bollerslev, 1997; Allez and Bouchaud,
2011).

What is largely missing is an understanding of the drivers of these synchronous correlations, using
the properties of the collective stock dynamics at shorter time scales. Here, we apply a statistical
methodology, detailed below, in order to study directed networks of lagged correlations among the 100
largest market capitalization stocks in the New York Stock Exchange (NYSE). In particular, we consider
data from both the beginning of the previous decade and today. The resulting network representations
of the system provide insights into its underlying structure and dynamics. Our analysis reveals how the
interplay of price movements at short time scales evolves during a trading day, how it has changed over
the past decade, and quantifies how it contributes to structural properties of the synchronous correlation
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matrix at longer time scales. For example, we find that unlike in the 2001-03 period, correlations
increase throughout the day in the 2011-13 period. Furthermore, auto and lagged correlations play
a much more prominent role, compared to what is observed in the 2001-03 data. We find striking
periodicities in the validated lagged correlations, characterized by surges in network connectivity at the
end of the trading day, which are crucial to account for when modeling equity price fluctuations. We
show how these periodicities can refine our understanding of empirical phenomena, such as the Epps
effect, and how they may be incorporated into regression models. We subject our analysis to a variety
of robustness checks, which are detailed in the Supplementary Information. Our analysis provides a
deeper understanding of market risk by focusing on the short-term drivers of collective stock dynamics
resulting from lagged and auto-correlations.

In finance, for example, a statistically significant correlation between the price time series of stocks of
two companies provides information on their comovement, and provides important information on how
they react in times of risk. However, this does not provide the information on how the price movements
of one company will influence price movements of a second company. Such a lead-lag relationship Curme
et al. (2014) is critical for the understanding of the market dynamics and the underlying mechanisms
responsible for it. Thus, in this paper we make use of the SVN methodology to study the structure
and dynamics of the U.S. stock market. Our results present evidence for the existence of such lead-lag
relationships. By comparing data from from the beginning of the first decade of the century to that of
the second, we shed new light on the changes in the market structure, which are potentially related to
the current volatile financial reality.

2. Statistically Validated Network methodology

At short time scales, measured synchronous correlations among stock returns tend to be lower in
magnitude (Epps, 1979), and lagged correlations among assets may become non-negligible (Toth and
Kertesz, 2009; Curme et al., 2014). Hierarchical clustering methods, which rely on a ranking of esti-
mated correlations, will be strongly influenced by statistical uncertainties in this regime. An alternative
approach is the use of a thresholding process, admitting all pairwise correlations beyond a threshold as
edges in a correlation-based network. The threshholding approach requires fewer assumptions and is less
restrictive; however, it requires making an ad hoc choice of the threshold, which is then used for all the
variables. Recently, a solution to this issue has been presented through the use of statistically validated
networks (Curme et al., 2014). The Statistically Validated Network (SVN) methodology (Tumminello
et al., 2011) provides the means to choose a statistically significant threshold for each variable inde-
pendently, retaining information about the distribution of each individual time-series. We apply this
methodology at different points in the trading day in order to explore the intraday pattern of collective
stock dynamics.

First, we transform the processed data from price to additive return, using the commonly used
transformation

ri(t) = log(Pi(t+ ∆t))− log(Pi(t)). (1)

where Pi(t) is the price of stock i at time t, and ∆t is the sampling time resolution. We obtain intraday
price data from the NYSE Trades and Quotes (TAQ) database (Brownlees and Gallo, 2006).

We perform a lagged-correlation analysis between all possible stock pairs. Lagged-correlation is a
standard method in signal processing of estimating the degree to which two series are correlated (see
for example (Muchnik et al., 2009; Arianos and Carbone, 2009; Carbone and Castelli, 2003; Carbone,
2009)). The discrete lagged-correlation function between two time series X and Y is given by (Chou,
1975)

ρX,Y (d) =

∑N−d
i=1 [(X(i)− 〈X〉) · (Y (i− d)− 〈Y 〉)]√∑N−d

i=1 (X(i)− 〈X〉)2 ·
√∑N−d

i=1 (Y (i− d)− 〈Y 〉)2
(2)
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where d is the lag used. In this work we use values of d = ±1. When we consider the case of d = 0,
then we end up with the standard synchronous Pearson correlation coefficient.

In this work we focus on the returns matrix at the ∆t = 15 minute time horizon, and divide each
trading day into non-overlapping ∆t parts (∆t1,∆t2, ...,∆t26). We partition the contributions to each
lagged correlation based on the period ∆ti, in order to explore the effects of intraday periodicities in the
data. For each time of day, we construct two matrices, A and B. For example, starting with the first 15
minutes of the day represented by ∆t1, then row m, column n of A is the return of stock n during the
first 15 minutes (9:30 - 9:45 a.m.) of day m of the data. Row m, column n of B is the return of stock
n during the second 15 minutes (9:45 - 10 a.m.) of day m of the data. So the number of rows of A or
B is the number of days in the investigated dataset. We then calculate the lagged correlation matrix,
where each entry (m,n) is the Pearson correlation coefficient of column m of matrix A with column n
of matrix B. This process results in the empirical lagged correlation matrix, Cm,n(∆ti).

For each chosen ∆ti, the matrix Cm,n(∆ti) ≡ C can be considered a weighted adjacency matrix for
a fully connected, directed graph. We aim to filter the links in this graph according to a threshold
of statistical significance. To this end we apply a shuffling technique as follows: the rows of A are
shuffled repeatedly, without replacement, so as to create a large number of surrogated time series of
returns. After each shuffling we recalculate the lagged correlation matrix, and compare this shuffled
lagged correlation matrix C̃ to the empirical matrix C. For each shuffling we thus have an independent
realization of C̃. We then construct the matrices U and D, where Um,n is the number of realizations for

which C̃m,n ≥ C C̃m,n, and Dm,n is the number of realizations for which m,n ≤ Cm,n.
From the construction U we will associate a one-tailed p-value with all positive correlations as the

probability to observe, by chance, a correlation which is equal to or higher than the empirically-measured
correlation. Similarly, from D we will associate a one-tailed p-value with all negative correlations. In
this analysis we choose our threshold to be p = 0.01. We must adjust our statistical threshold, however,
to account for multiple comparisons. We use the conservative Bonferroni correction for N stocks, so that
our new threshold is 0.01/N2. Thus, for a sample of N = 100 stocks, we construct 106 independently
shuffled surrogate time series; if Um,n = 0 we may associate a statistically-validated positive link from
stock m to stock n (p = 0.01, Bonferroni correction). Likewise, if Dm,n = 0, we may associate a
statistically-validated negative link from stock m to stock n. In this way we construct the Bonferroni
network (Tumminello et al., 2011).

For comparison, for each part of day ∆ti we also construct the network using p-values that are
corrected according to the False Discovery Rate (FDR) protocol. This correction is less conservative
than the Bonferroni correction, and is constructed as follows. The p-values from each individual test are
arranged in increasing order (p1 < p2 < · · · < pN2), and the threshold is defined as the largest k such
that pk < k 0.01/N2. Therefore, for the FDR network, our threshold for the matrices U (or D) is not
zero but instead is the largest integer k such that U (or D) has exactly k entries less than or equal to
k. From this threshold we may filter the links in C to construct the FDR network (Tumminello et al.,
2011).

3. Intraday periodicities

This approach, in which we construct a distinct network for each interval of ∆t minutes between
9:30 a.m. and 4:00 p.m., provides a picture of the dynamics of lagged correlations among equities during
a characteristic trading day. We uncover consistent, dramatic changes in network connectivity during
the trading day, suggesting that collective stock dynamics exhibit diurnal patterns at the daily level.
These diurnalities can be important features to account for when modeling stock price movements.

Figure 1 displays the intraday pattern of the average synchronous correlation between returns of
all stock pairs in the top 100 most capitalized stocks traded on the NYSE. Prices are sampled at a
time resolution of ∆t = 15 minutes. We include results for data from the time period 2001-03, as well
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Figure 1: intraday pattern of the average synchronous correlation between fifteen minute stock returns of the 100 most
capitalized stocks traded at NYSE in the period 2001-03 (black continuous line) and 2011-13 (red dashed line).

as 2011-13, where we observe striking changes over the past decade in the magnitude of the measured
correlations. Both periods exhibit a similar profile in the intraday pattern of synchronous correlations,
with an explosive growth in the first hour of the trading day that levels in the late morning, followed
by a steady increase in the afternoon. A similar profile has been observed in other studies (Allez and
Bouchaud, 2011).

We use the statistical methodology introduced above to construct an analogous profile for lagged
correlations. In Fig. 2 we plot the average lagged correlation between the same stock pairs from Fig.
1. Prices are again sampled at a time resolution of ∆t = 15 min., with correlations evaluated at one
sampling time horizon. We find that, although the distributions of lagged correlation coefficients are
on average quite small, there exist pairs of stocks in the tails of these distributions that represent a
statistically-significant lagged correlation, in the sense of the methodology described above. These stock
pairs form the links in a series of statistically-validated networks. We plot the intraday pattern of lagged
correlations for the stock pairs belonging to the Bonferroni network in red, and the FDR network in
blue. In both the data from 2001-03 and 2011-13 we find that the bulk of the lagged correlations tends
to shift to the positive regime during the final minutes of the trading day.

The positive shift in the bulk of the lagged correlation coefficients manifests as an increase in network
connectivity. In Fig. 4 we display visualizations of the Bonferroni networks for both the beginning,
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Figure 2: intraday pattern of the average lagged correlation, evaluated at one lag, between fifteen minute stock returns
of the 100 most capitalized stocks traded at NYSE in the period 2001-03 (top left panel) and 2011-13 (top right panel).
In each panel, we also report the pattern of lagged correlation with average taken over all the links that belong to the
Bonferroni network (red squares) and the FDR network (blue diamonds), by distinguishing between positive (+) and
negative (-) statistically validated correlations. We also provide the probability density function of all N2 = 10, 000
lagged correlation coefficients for two intraday periods in 2001-03 (bottom left panel) and 2011-13 (bottom right panel).
The blue shaded histogram corresponds to correlations between returns in the first 15 minutes of the trading day (9:30
a.m. to 9:45 a.m.) and those in the second 15 minutes (9:45 a.m. to 10:00 a.m.). The green shaded histogram corresponds
to correlations between returns in the second-to-last 15 minutes of the trading day (3:30 p.m. to 3:45 p.m.) and those in
the last 15 minutes (3:45 p.m. to 4:00 p.m.). We observe a characteristic positive shift in the lagged correlations in the
final minutes of the trading day.
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middle and end of the trading day for the period 2001-03, and the corresponding visualizations for the
2011-13 data in Fig. ??. In both periods we observe a decrease in connectivity during the middle
of the trading day, followed by an explosive growth in the significance of positive lagged correlations
during the final minutes of the trading day, reminiscent of the well-known U-shaped pattern in intraday
transaction volume and volatility (Admati and Pfleiderer, 1988; Andersen and Bollerslev, 1997). Our
analysis underscores dramatic intraday periodicities in the co-movements of asset prices. Despite these
effects, we find that the validated links are largely persistent throughout the trading day, as detailed in
the Supplementary Information.

4. Reconstructing correlations

These periodic effects are crucial to take into account when modeling collective stock dynamics. Here
we investigate the impact of high-frequency lagged cross correlations and autocorrelations of returns
on synchronous correlations between stock returns evaluated at a larger time horizon. In particular,
we retain information on the intraday period when measuring how these lead-lag relationships at short
timescales may influence synchronous co-movements among equities at longer timescales. In the Sup-
plementary Information we derive an equation, obtained by taking an approach similar to the one
presented in ref. (Toth and Kertesz, 2009), in which we show how the synchronous correlation between
two stock returns time series, as evaluated at a certain intraday time window, e.g., the first 130 minutes
of the trading day, can be decomposed in order to make apparent the individual contribution of auto-
correlations and lagged cross-correlations evaluated at smaller time windows, such as ∆t = 5 minutes.
The only assumption we make to obtain that equation is that the intraday volatility pattern σ2

i (q,∆t) of
a stock i, where q indicates the intraday-time and ∆t the time horizon, can be written as an idiosyncratic
constant ci, associated with each stock, times a function fq(∆t) that describes the intraday variations of
volatility, and which is common to all the stocks: σ2

i (q,∆t) = ci · fq(∆t). Here we show the equation in
a simple case, in order to make apparent the contributions of each term. Consider the first 30 minutes
of the trading day, and suppose we are interested in the synchronous correlation coefficient ρx,y between
the time series x and y, such that {x} = {x(1), x(2), ..., x(T )} and {y} = {y(1), y(2), ..., y(T )}, where
T is the number of trading days in the dataset, and x(i) and y(i) represent the return of stock i and
stock j, respectively, in the first 30 minutes of day i. Each one of these time series of log-returns can
be decomposed in the sum of p = 2 time series of log-returns, specifically, the time series of returns in
the first p = 2 intraday time intervals of ∆t = 15 minutes:

{x} ={x1(1) + x2(1), x1(2) + x2(2), ..., x1(T ) + x2(T )};
{y} ={y1(1) + y2(1), y1(2) + y2(2), ..., y1(T ) + y2(T )};

where x1(i) and y1(i) (x2(i) and y2(i)) are the returns of the two stocks observed in the first (second)
15 minutes of day i. In this way we obtain that:

ρx,y =
f21 ρx1,y1 + f22 ρx2,y2 + f1 f2 (ρx1,y2 + ρx2,y1)√

[f21 + f22 + 2f1 f2 ρx1,x2 ] [f21 + f22 + 2f1 f2 ρy1,y2 ]
. (3)

This equation clearly shows how the interplay between short-term lagged cross-correlations and auto-
correlations contributes to the value of the longer-term synchronous correlation ρx,y. For instance, the
equation above shows how negative values of autocorrelations, ρx1,x2 and ρy1,y2 , and/or positive values
of lagged cross correlations, ρx1,y2 and ρx2,y1 may be responsible for the well known Epps effect (Epps,
1979): ρx,y > max(ρx1,y1 , ρx2,y2). It is also worthwhile to point out that the correlation coefficient ρx,y
does not depend on quantities related to other stocks in the system. Therefore, structural properties
of the correlation matrix, such as the fact that it should be positive semi-definite, are not forced by
our reconstruction equation. In Fig. 5, we show some results of the reconstruction analysis of the 100
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stock correlation matrix for the two time periods under investigation, 2001-03 (left panel) and 2011-13
(right panel). We have divided the trading day in three time windows of 130 minutes each, from 9:30
a.m. to 11:40 a.m. (top panels), from 11:40 a.m. to 1:50 p.m. (mid panels), and from 1:50 p.m.
to 4:00 p.m. (bottom panels), and reconstructed synchronous correlations in each time window by
considering a subdivision of it in 26 time windows of 5 minutes. In each panel we show three curves,
one obtained by considering the contribution of both auto-correlations and lagged cross-correlations up
to a given lag, as reported on the x-axis, one obtained by only retaining the contribution of lagged
cross-correlations, and one obtained by only considering the contribution of autocorrelations. The first
point from the left on the x-axis, labeled NP-0, corresponds to the case in which, besides neglecting
all the auto-correlations and lagged cross-correlation in the reconstruction formula, we also neglect the
intraday volatility pattern. The curves are obtained by comparing the reconstructed correlation matrix
Crec and the original correlation matrix Cor through the standard Frobenius norm:

F (Cor, Crec) =
√

tr [(Cor − Crec)(Cor − Crec)T ], (4)

where tr[·] is the trace operator, and apex T indicates the transpose operator. We normalize each
distance by the Frobenius distance between Cor and the identity matrix, representing the distance that
would be obtained under maximal ignorance of the system’s correlations. The results obtained for the
2001-03 time period (left panels) indicate that lagged cross-correlations contribute more to synchronous
correlations than autocorrelations in all the three time windows, although such a contribution tends to
decrease during the day. On the other hand, in the 2011-13 time period, the relative impact of lagged
cross-correlations decreases, and the interplay between auto-correlations and lagged cross-correlations
becomes stronger. This evidence is also confirmed by an analysis of the spectrum of correlation ma-
trices: indeed, all the correlation matrices reconstructed in the period 2001-03 turn out to be positive
definite, regardless of the number of lags considered in the reconstruction, or if we ignore autocorre-
lations or lagged cross-correlations. In the 2011-13 time period the situation is different. If one uses
both autocorrelations and lagged cross-correlations to reconstruct the correlation matrix, then all the
reconstructed matrices are positive definite for any lags considered in the reconstruction. However, if we
constrain ourselves to use either autocorrelations or cross-correlations in the reconstruction equation,
then most of the reconstructed matrices display some negative eigenvalues. We may interpret this result
as an increased fragility of the structural properties of the 2011-13 correlation matrices in the presence
of noise, and explore this interpretation in the Supplementary Information.

The presented analysis shows that, in the period 2001-03 1) the effect of lagged cross correlations on
determining synchronous correlations at larger time horizons is stronger than the effect of autocorrela-
tions and 2) the interplay between these two effects is moderate. At the contrary, in the period 2011-13,
we observe that 1) the effect of lagged cross correlations on determining synchronous correlations at
larger time horizons is comparable with the effect of autocorrelations and 2) the interplay between these
two effects is much stronger in this period. We find that the magnitudes of the lagged cross-correlation,
autocorrelation, and volatility terms vary throughout the trading day. Thus, the roles of the factors
contributing to the Epps effect are dynamic, both during a single trading day and over the span of
years.

5. Regression model

The intraday signals we uncover are of potential use as a feature-selection stage in modeling stock
price dynamics. If one aims to model the returns of a given asset using only previous returns of other
assets as inputs, the careful selection of these inputs is of critical importance to prevent overfitting and
to aid in a model’s interpretation.

We show that, at each intraday period, the relevant inputs to a model of the returns of stock i can be
reliably taken as the set of direct predecessors {νj} of the corresponding node in the validated network
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Figure 5: Normalized Frobenius distance between the 130 minute return correlation matrix of the 100 most capitalized
stocks traded at NYSE, Cor, and the corresponding correlation matrix, Crec, reconstructed according to the method
described in the text in the time period 2001-03 (left panels) and 2011-13 (right panels), in the three 130 minute segments
of the trading day: from 9:30 a.m. to 11:40 a.m. (top panels), from 11:40 a.m. to 1:50 p.m. (middle panels), and
from 1:50 p.m. to 4:00 p.m. (bottom panels). Distances are normalized by the Frobenius distance between Cor and the
identity matrix. Each value reported in the horizontal axis indicates the number of lags used to reconstruct 130 minute
return correlations from from 5 minute return (lagged and synchronous) correlations. The first point from the left in each
panel, labeled “NP-0”, is obtained by disregarding the intraday pattern of volatility, which is considered in all the other
reconstructed matrices. Three curves are shown in each panel: the green (red) curve describes the results obtained by only
including autocorrelation (lagged cross-correlation) terms in the equation used to reconstruct synchronous correlations,
while the blue curve shows results in the case in which both autocorrelation and lagged cross-correlation terms are included
in the reconstruction equation.

for that period. That is, we need only consider a node j as an input to the model if there is a link from
j to i. To demonstrate this, for each intraday period we attempt to model the returns of stocks with an
in-degree of at least one with a simple linear model. If we represent column i of matrices A or B from
the methodology section with Ai or Bi, then we fit

Bi = β0 + β1Aν1 + β2Aν2 + · · ·+ βkiAνki + ε (5)

where ki is the in-degree of node i and there is a directed edge to i from each node j ∈ {νj}.
For each model we compute the Bayesian information criterion, or BIC, where for each node i

BICi = (ki + 1) ln(T )− 2 ln(Li) (6)

where T is the number of rows in A and B, equal to the number of days in the analysis, and Li is the
maximized likelihood for the model in equation (5). The BIC is a criterion for model selection, and can
be interpreted as an anticipation of a model’s out-of-sample performance using only in-sample training
data.

We compare the measured BICs to a randomised model, in which for each node i we randomly select
ki of the N = 100 available nodes as regressors in equation (5). This procedure is repeated 100 times
for each model. In Fig. 5, for both the 2001-03 and 2011-13 datasets, we plot the mean difference in
BICs for all models. With the exception of one period in the 2011-13 dataset, the specification of model
inputs using the Bonferroni network always outperforms the randomised specification. The specification
using the FDR network fares similarly, although it fails to outperform the randomised specification in
one period in the 2001-03 dataset and five periods in the 2011-13 dataset. These periods fall at the
end of the trading day, when, due to the large numbers of validated links, the relative advantage of the
validated networks in feature selection diminishes against a random selection of inputs.
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Figure 6: Difference in BICs between the models in equation (5) and the randomized models described in the text, for
both the periods 2001-03 (top panel) and 2011-13 (bottom panel). We generate 100 realisations of the random model
for each stock. Points show the mean BIC deviation of all stocks from the mean Bayesian Information Criterion (BIC)
of the corresponding randomised models. Error bars show the uncertainties in this deviation for all models, added in
quadrature.
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Figure 7: Probability of observing at least one negative eigenvalue in each 130 min. correlation matrix after perturbing
correlation matrices with a given level of noise. In the right panel we exclude the months of August, September and
October 2011 from the analysis. For a noise level x, each symmetric pair of off-diagonal elements (i, j) and (j, i) are
perturbed by a number from a uniform distribution on the interval [−x, x]. Data from 2001-03 are shown in blue, while
data from 2011-13 are shown in red. We also show the mean and maximum off-diagonal correlation values from each
matrix. We observe that the 2011-13 data exhibits negative eigenvalues at a consistently lower noise level than the 2001-03
data. Each probability is evaluated through 1000 independent perturbations of the matrix. In addition, the 2011-13 data
has four pairs of stocks that represent the same firm: BRK-A and BRK-B, RDS-A and RDS-B, BHP and BBL, UN and
UL. These stocks have very high synchronous correlations, so we exclude BRK-B, RDS-B, BBL and UL from the analysis.
Including them does not qualitatively change the results, but exaggerates the observed pattern.

6. Stability of reconstructed correlation matrices to noise

Here we provide a brief explanation of the structural problems uncovered in the reconstructed cor-
relation matrices in 2011-13. If we constrain ourselves to use only autocorrelations or lagged cross-
correlations in the reconstruction analysis, then most matrices in this period are not positive definite
as they have some number of negative eigenvalues. On the other hand, all reconstructed correlation
matrices in the period 2001-03 have positive eigenvalues.

We illustrate this increased “fragility” of the 2011-13 correlation matrices in Figure 7.
In this analysis we perturb the 130 minute correlation matrices from each portion of the trading day

with a given level of noise. For a noise level x, each symmetric pair of off-diagonal elements (i, j) and
(j, i) are perturbed by a number from a uniform distribution on the interval [−x, x]. We then measure
the probability of observing at least one negative eigenvalue in each matrix through 1000 independent
perturbations. In Figure 7 we compare results from 2001-03 with those from 2011-13, and also show the
contribution of the months of August, September and October 2011 by removing it from the analysis
(right panel).

We find that the structural properties of the correlation matrices obtained in the period 2001-03 are
significantly more robust than those obtained in 2011-13. This analysis complements the observation
presented in the main text, that the 130 minute correlation matrices reconstructed without contributions
from 5 minutes lagged cross-correlations or autocorrelations are not always positive definite. Owing in
part to an increased level of synchronous correlation, there are tighter bounds constraining each element
of the 2011-13 correlation matrices. Given a noise level, these bounds are more easily violated than in
the 2001-03 data.
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Figure 8: Matrices of Jaccard Indices between sets of links corresponding to networks for all intraday periods at a time
horizon ∆t = 15 min. Left column shows results using data from 2001-03 (FDR and Bonferroni networks); right column
shows results using data from 2011-13 (FDR and Bonferroni networks). We find that the validated links are generally
more persistent in the 2011-13 data throughout the trading day.

7. Persistence of links

To what extent do the lead-lag relationships that we uncover persist during the trading day? Al-
though we find intraday effects that influence the number and strength of the validated lagged correla-
tions, it is a separate question to consider whether a link that is validated in one intraday period will
be validated in another.

We find that the validated links are indeed largely persistent throughout the trading day, although
they are more strongly dependent on the particular intraday period in the 2001-03 data. We support
this finding with two analyses. First, we may quantify the extent to which two networks share links
using the Jaccard Index:

J(i, j) =
|Li ∩ Lj|
|Li ∪ Lj|

,

where Li is the set of links in network i. We distinguish edges by both direction and sign when
constructing these sets. A high value of the Jaccard Index, in this context, indicates that two networks
share a large proportion of their total links. In Figure 8 we display matrices of Jaccard Indices J(i, j)
between sets of links corresponding to networks for all intraday periods at a time horizon ∆t = 15 min.

We find that the Jaccard Indices are generally high, suggesting that the links we validate are indeed
persistent across many time periods, although this effect is weaker in the 2001-03 data. Moreover, we
find that the Jaccard Indices are largely homogeneous throughout the trading day; i.e., it does not seem
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Figure 9: Distributions of link persistence for all links in networks at a time horizon ∆t = 15 min. Left column shows
results using data from 2001-03 (FDR and Bonferroni networks); right column shows results using data from 2011-13
(FDR and Bonferroni networks). We find that the validated links are generally more persistent in the 2011-13 data
throughout the trading day.

to be the case that links are shared preferentially in neighboring time periods. We find that this effect
is stronger in the 2011-13 data. Finally, we have verified that these plots are only very weakly affected
by the turmoil of August - October 2011, as the corresponding diagrams for the networks that were
constructed with this period removed are similar.

The analysis in Figure 8 quantifies a degree of similarity among intraday periods. We can also
examine this similarity at the level of individual links, by quantifying the persistence of links. This
persistence is defined as the fraction of intraday networks (of which there are 25 for ∆t = 15 min.)
in which a given link appears. We plot the distributions of link persistence for all networks in Figure
9, where we observe again from this perspective that individual links seem to be more persistent in
the 2011-13 data (although, again, this analysis does not convey information regarding the number or
strength of the validated links).

8. Influence of autocorrelations

8.1. Effect of autocorrelations on linear models

To examine the influence of autocorrelations on the performance of the linear models described in
the text, we repeat the analysis with validated autocorrelation links removed. That is, the model for
each node i has ki inputs, with ki the in-degree of node i, disregarding autocorrelation links. As in
the text, we compare the BICs of these models with those obtained from randomly selecting ki of the
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Figure 10: Difference in BICs between the linear models with inputs prescribed by the validated network and the ran-
domized models described in the text, for both the periods 2001-03 (left panel) and 2011-13 (right panel), upon removal
of autocorrelation links. We generate 100 realizations of the random model for each stock. Points show the mean BIC
deviation of all stocks from the mean BIC of the corresponding randomized models. Error bars show the uncertainties in
this deviation for all models, added in quadrature.

N = 100 possible input nodes as regressors in the model. In Figure 10, for both the 2001-03 and
2011-13 datasets, we plot the mean difference in BICs for all models. The results highlight the elevated
influence of autocorrelations in the recent data: whereas the models in 2001-03 continue to outperform
the randomized models, in 2011-13 the model performance is markedly worse if autocorrelations are
ignored.

8.2. Partial lagged correlation networks

The reconstruction analysis presented in the text reveals how both autocorrelations and lagged
correlations at a given time horizon compete to form synchronous correlations among stock returns
evaluated at a larger time horizon. In the 2011-13 dataset, we find that the two contributions are
tangled, and when one attempts to uncouple them the result is a reconstructed correlation matrix
that exhibits severe structural problems, such as negative eigenvalues. This result might be due to
the fact that (i) the average synchronous correlation among stock returns is quite large in this period–
significantly larger than in the 2001-03 data, and (ii) many statistically significant autocorrelations are
observed in the 2011-13 data, while fewer are observed in the 2001-03 data. These two observations have
the potential to explain the presence of a large number of statistically validated lagged correlations in the
2011-13 dataset, and could also explain the tight connection between autocorrelations and lagged cross-
correlations mentioned above. That is, a lagged cross-correlation between two stock returns ρ(x(t), y(t+
τ)) may just reflect the presence of autocorrelation of stock return x, ρ(x(t), x(t+τ)) and the synchronous
correlation between stock returns x and y, ρ(x(t + τ), y(t + τ)). Similarly, we could consider the
autocorrelation of returns in stock y, ρ(y(t), y(t+ τ)) and the synchronous correlation ρ(x(t), y(t)).

To check that the lagged cross-correlations we validate are not spuriously the result of autocorrela-
tions, we construct networks derived from partial lagged correlations

ρ(x(t), y(t+ τ)|y(t)) =
ρ(x(t), y(t+ τ))− ρ(y(t), y(t+ τ))ρ(x(t), y(t))√

[1− ρ(y(t), y(t+ τ))2][1− ρ(x(t), y(t))2]
, and (7)

ρ(x(t), y(t+ τ)|x(t+ τ)) =
ρ(x(t), y(t+ τ))− ρ(x(t+ τ), y(t+ τ))ρ(x(t), x(t+ τ))√

[1− ρ(x(t+ τ), y(t+ τ))2][1− ρ(x(t), x(t+ τ))2]
, (8)
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subtracting off the influence of autocorrelations.
We thus repeat the statistical validation procedure, using the same shuffling procedure described in

the text, with a matrix of lagged partial correlations in place of the lagged correlation matrix (considering
only the off-diagonal elements, as the diagonal elements of this partial correlation matrix are undefined).
We build separate networks for partial correlations given by (7) and (8), again choosing our statistical
threshold to be p = 0.01.

We report results for ∆t = 15 min. in the last time horizon of the trading day, when we find the
strongest autocorrelations. Using the Bonferroni correction for multiple comparisons, we validate 448
positive links using the partial correlation matrix (7), and 313 positive links using the matrix (8). We
validate no links of negative correlation. Using the original lagged correlation matrix, we validate 91
positive links and 18 negative links. Because the autocorrelations are negative, we validate many more
links in the partial lagged correlation networks; that is, the original lagged correlation networks contain
many positive links in spite of the negative correlations, and not because of them. We note that the
partial lagged correlation networks using the matrices (7) and (8) share an intersection of 77 and 83
links, respectively, with the original network. The probability of randomly sampling these intersections
x from the L = 100 × 99 = 9900 total possible lagged cross-correlation links in n = 91 “draws” (links
in the original network) is given by the hypergeometric distribution:

P (x|n, k, L) =
k
x

L−k
n−x(
L
n

) ,

( )( )
where k is the number of validated links in the partial correlation network. We can thus associate a
p-value to these intersections as the probability of validating at least x links common to both the original
and partial lagged correlation networks under the null hypothesis of random sampling:

p = P (j > x|n, k, L) = 1− P (j < x|n, k, L) = 1−
j=0

P (j|n, k, L).
x∑

This number is vanishingly small for the numbers of links k validated in each partial correlation network,
and the intersections x between the directed links in this network and the directed links validated in
the original lagged correlation network. So we may safely conclude that the lagged cross-correlations
we validate in the data are not artifacts of autocorrelation effects in the time series.

We repeat the same procedure on the 2011-13 data, validating 629 positive links using the partial
correlation matrix (7), and 831 positive links using the matrix (8). We validate no links of negative
correlation. Using the original lagged correlation matrix, we validate 801 positive links and no negative
links. We note that the partial lagged correlation networks using the matrices (7) and (8) share an
intersection of 295 and 374 links, respectively, with the original network. Again, we may associate a
p-value to these intersections using the hypergeometric distribution, which is vanishingly small both
networks.

9. Discussion

The methodological framework presented here provides a validation of lead-lag relationships in finan-
cial markets, and quantifies the impact of underlying networks of short term lead-lag relationships on
longer term synchronous correlations among equities throughout different parts of a trading day. First,
we validate the existence of such relationships using empirical data from two different periods. The val-
idated lead-lag relationships provide new insights into the dynamics of financial markets, and provide
new understandings into such phenomena as the Epps effect. Finally, we present an example of the use
of such new information on market dynamics, by performing a regression model which incorporates the
information on the validated lead-lag relationships.
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Comparing the time periods 2001–2003 and 2011–2013, the synchronous correlations among these
high market capitalization stocks have grown considerably, whereas the number of validated lagged-
correlation relationships have decreased. We relate these two behaviors to an increase in the risks of
financial spillover and an increase in the informational efficiency of the market, respectively. Further-
more, our different analyses all show a change in the role of auto-correlation in market dynamics, which
is increasing. This is possibly related to the growing use of automated and high frequency trading, in
the U.S. market and elsewhere.

In summary, we introduce the statistically validated network framework for validating lead-lag re-
lationships in the U.S. market, and are able to empirically identify and validate such relationships.
This sheds important new light into the underlying dynamics of the U.S. financial market, and provides
critical information into future risk management strategies. Furthermore, it provides policy and deci-
sion makers new information on the structure and stability of the market, and lays the ground for new
models and theories for asset management, risk management, and financial spillover.
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Appendix A. Reconstruction of synchronous correlations using autocorrelations and lagged
cross-correlations

Consider two time series of log-returns, {x} and {y}, associated with a certain intraday window p∆t,
with integer p > 2, e.g. the first p∆t = 195min of a trading day. We are interested in the correlation
coefficient between the time series

{x} ={x1, x2, ..., xT} and

{y} ={y1, y2, ..., yT},

where T is the number of trading days in the dataset. Each one of these time series of log-returns can
be decomposed as the sum of p time series of log-returns— specifically, the time series of returns in the
first p intraday time intervals of ∆tmin, e.g., if p∆t = 195min one can set p = 13 and ∆t = 15min:

{x} =

{
p∑
j=1

x1(j),

p∑
j=1

x2(j), ...,

p∑
j=1

xT (j)

}
;

{y} =

{
p∑
j=1

y1(j),

p∑
j=1

y2(j), ...,

p∑
j=1

yT (j)

}
;

where xi(j) and yi(j) are the returns of the two stocks observed in jth 15 minute time window of day
i, j = 1, ..., p. We further assume that

< x(j) >=
1

T

T∑
i=1

xi(j) =< y(j) >=
1

T

T∑
i=1

yi(j) = 0, ∀j = 1, ..., p.

This is not a very restrictive hypothesis because it’s (usually) appropriate to assume that the expected
return is 0. Therefore, we obtain that:

< x >= 0 and < y >= 0

as a consequence of the additivity of log-returns and the linearity of the average. Let’s now consider
the (maximum likelihood estimate of the) the variance of the variable x:

σ2
x =< x2 >=

1

T

T∑
i=1

p∑
j=1

xi(j)

2

=

=
1

T

T∑
i=1

[
p∑
j=1

xi(j)
2 + 2

p−1∑
j=1

xi(j)xi(j + 1) + 2

p−2∑
j=1

xi(j)xi(j + 2) + ...+ 2xi(1)xi(p)

]
=

=

p∑
j=1

σx(j)
2 + 2

p−1∑
j=1

σx(j)σx(j + 1)ρxj ,xj+1
+ 2

p−2∑
j=1

σx(j)σx(j + 2)ρxj ,xj+2

+ ...+ 2σx(1)σx(p)ρx1,xp ,

[ ]

where σx(j)
2 is the variance of x(j), and ρxj ,xj+1

is the autocorrelation of x. We also have an analogous
equation for the variance of the variable y.

It is well known that there is an intraday pattern of volatility, which is common to all the stocks
(Allez and Bouchaud, 2011). This means that, without introducing a large error, we can set:

σx(j) = kx · f(j); σy(j) = ky · f(j), ∀j = 1, ..., p (A.1)
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where kx and ky are parameters specific to the two stocks, and f(j) describes the (common) intraday
pattern of volatility. This assumption can be used to simplify the expression for the variance of x:

σ2
x = k2x

p∑
j=1

f(j)2 + 2

p−1∑
j=1

f(j) f(j + 1)ρxj ,xj+1
+ 2

p−2∑
j=1

f(j) f(j + 2)ρxj ,xj+2
+ ...+ 2 f(1) f(p)ρx1,xp ,

[ ]

where Eq.1 has been used to describe the intraday pattern of volatility. Similarly, we obtain the variance
of y:

σ2
y = k2y

p∑
j=1

f(j)2 + 2

p−1∑
j=1

f(j) f(j + 1)ρyj ,yj+1
+ 2

p−2∑
j=1

f(j) f(j + 2)ρyj ,yj+2
+ ...+ 2 f(1) f(p)ρy1,yp .

[ ]

The covariance of x and y is then:

cov(x, y) =< xy >=
1

T
i=1 j=1

xi(j) ·
l=1

yi(l) =

= kx ky

{[
p∑
j=1

f(j)2ρxj ,yj

]
+

[
p−1∑
j=1

f(j)f(j + 1)(ρxj ,yj+1
+ ρxj+1,yj)

]
+ ...+ f(1)f(p)(ρx1,yp + ρxp,y1)

}
.

T∑[(
p∑ ) (

p∑ )]

Therefore the synchronous correlation coefficient between x and y is given by:[ ] [ ]
ρx,y =

∑p
j=1 f(j)2ρxj ,yj +

∑p−1
j=1 f(j)f(j + 1)(ρxj ,yj+1

+ ρxj+1,yj) + ...+ f(1)f(p)(ρx1,yp + ρxp,y1)√(∑p
j=1 f(j)2 + 2

∑p−1
j=1 f(j) f(j + 1)ρxj ,xj+1

+ ...
)(∑p

j=1 f(j)2 + 2
∑p−1

j=1 f(j) f(j + 1)ρyj ,yj+1
+ ...

)
If we assume that all lagged cross-correlations evaluated at a lag larger than 1 are equal to 0, and

that all the auto-correlations are negligible then:∑p
j=1 f(j)2

∑
ρ p−1
x ,y j=1 f(j)f(j + 1)(ρx ,y + ρx ,y )

ρ +
j

x,y = ∑ j j j j+1 +1 j

p ∑
2

j=1 f(j) p .
j=1 f(j)2

This expression for ρx,y is easy to interpret as the sum of two terms with different meanings. The first
term is a weighted average of the synchronous correlations between x and y in the p sub-intervals of
∆t minutes, with weights that solely depend on the intraday volatility pattern. This term cannot be
larger than max({ρxj ,yj ; j = 1, ..., p}), so it cannot be used to explain the Epps effect. The second term
involves lagged correlations ρxj ,yj+1

and ρxj+1,yj . If their sum is positive then this term will be positive,
and, therefore, may explain the Epps effect.

Appendix B. Contribution of high volatility period to lagged correlations

The months of August to October 2011 witnessed a volatile period in U.S. stock exchanges. Here
we examine the influence of this period on the results presented in the text. We may quantify the
contribution of each day in the data to the average lagged correlation in each intraday period as follows.
Using equation (2) of the text, we may write the mean lagged correlation as averaged overall all N2

20



stock pairs as the sum:

〈C〉 =
1

N2

N∑
m=1

N∑
n=1

[
1

T − 1

T∑
i=1

(Am,i − 〈Am〉)(Bn,i − 〈Bn〉)
σmσn

]

=
T∑
i=1

[
1

N2(T − 1)

N∑
m=1

N∑
n=1

(Am,i − 〈Am〉)(Bn,i − 〈Bn〉)
σmσn

]

≡
T∑
〈C〉i

i=1

with 〈C〉i the defined as the term in brackets in the second line. The sum of these terms is then the
average lagged correlation associated with each intraday period. We plot the time-series of these terms
for each intraday period in Figure B.11.

The period of August through October 2011 appears as a volatile portion of the time series for
each intraday period. The contribution of this period is particularly pronounced toward the end of the
trading day, where a small number of days seem to contribute disproportionately to the average lagged
correlation. We therefore remove all days in August, September, and October 2011 to test the robustness
of our results when excluding periods of financial crisis. In Figure B.12 we compare the numbers of
validated positive and negative links using all available days in the data with those excluding the period
August-October 2011. We find that the influence of this volatile period on the statistically-validated
networks is largest at the end of the trading day, and that the lagged relationships uncovered by the
analysis are otherwise robust. This is corroborated by Figure B.13, where we see that the characteristic
positive shift in the distribution of lagged correlations at the end of the trading day is weakened upon
excluding the months of August through October 2011.

We additionally examine the effect of this period on the reconstruction analysis presented in the
text. In Figure B.14 we display the results of the reconstruction analysis for the 2011-13 data both
including and excluding the months of August through October 2011. We again find that the effect of
these months is most pronounced at the end of the trading day, from 1:50 p.m. to 4:00 p.m.. We also
see that, while this period contributed disproportionately to the measured lagged cross-correlations, it
had little effect on the measured autocorrelations, which continue to contribute to the reconstructed
195 minutes synchronous correlation.
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Figure B.11: Contributions 〈C〉i of each day i in the 2011-13 data to the mean lagged correlation measured for each intraday
period. Each row of each subfigure corresponds to a lagged correlation between two consecutive intraday periods. Inset
provides the mean lagged correlation as averaged over all stock pairs.
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Figure B.12: Top row: number of validated positive links in the 2011-13 data for all days (left) and after removal of
August-October 2011 (right). Bottom row: number of validated negative links in the 2011-13 data for all days (left) and
after removal of August-October 2011 (right).
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Figure B.13: Normalized histograms of all N2 = 1002 = 10, 000 lagged correlation coefficients for two intraday periods in
2011-13, excluding the months of August through October 2011. The blue shaded histogram corresponds to correlations
between returns in the first 15 minutes of the trading day (9:30 a.m. to 9:45 a.m.) and those in the second 15 minutes
(9:45 a.m. to 10:00 a.m.). The green shaded histogram corresponds to correlations between returns in the second-to-last
15 minutes of the trading day (3:30 p.m. to 3:45 p.m.) and those in the last 15 minutes (3:45 p.m. to 4:00 p.m.). The
characteristic positive shift in the lagged correlations in the final minutes of the trading day has weakened upon excluding
the months of August through October 2011.
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Figure B.14: Frobenius distance between the 130 minute return correlation matrix of the 100 most capitalized stocks
traded at NYSE, Cor, and the corresponding correlation matrix, Crec, reconstructed according to the method described
in the text in the three 130 minute segments of the trading day: from 9:30 a.m. to 11:40 a.m. (top panels), from 11:40
a.m. to 1:50 p.m. (middle panels), and from 1:50 p.m. to 4:00 p.m. (bottom panels). All data are from 2011-13. In the
left panel we show results using the entire period, as in the manuscript; in the middle panel we exclude the months of
August through October 2011; and in the right panel we show the results using only this period. Each value reported in
the horizontal axis indicates the number of lags used to reconstruct 130 minute return correlations from from 5 minute
return (lagged and synchronous) correlations. The first point from the left in each panel, labeled “NP-0”, is obtained by
disregarding the intraday pattern of volatility, which is considered in all the other reconstructed matrices. Three curves
are shown in each panel: the green (red) curve describes the results obtained by only including autocorrelation (lagged
cross-correlation) terms in the equation used to reconstruct synchronous correlations, while the blue curve shows results
in the case in which both autocorrelation and lagged cross-correlation terms are included in the reconstruction equation.
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