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Abstract

The global financial system is highly complex, with cross-border interconnections and
interdependencies. In this highly interconnected environment, local financial shocks
and events can be easily amplified and turned into global events. New models are
needed to capture the structure of the global financial village and uncover channels of
spillover and contagion. This paper analyzes the dependencies among nearly 4,000
stocks from 15 countries. The returns are normalized by the estimated volatility using
a GARCH model and a robust regression process estimates pairwise statistical rela-
tionships between stocks from different markets. The estimation results are used as a
measure of statistical interconnectedness, and to derive network representations, both
by country and by sector. The results show that countries like the United States and
Germany are in the core of the global stock market. The energy, materials, and finan-
cial sectors play an important role in connecting markets, and this role has increased
over time for the energy and materials sectors. The framework provides the means
to monitor interconnectedness in the global financial system on different aggregation
levels, and to show how they evolve in time.
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1. Introduction

The last two decades saw an increase in political and economic openness, mostly
accompanied by an increase in financial integration. Investment and risk management
have expanded beyond a regional context to acknowledge the global nature of finan-
cial markets. Analyzing and managing macroeconomic financial risks have become
increasingly important as global markets have become increasingly connected. The
sheer size of these markets and the number of products available require models that
can provide a hierarchical or topological simplification of this system. Among the
many factors contributing to the financial crisis of 2007-09, the increase in the inter-
connectedness of the global financial system is perhaps the least well understood. The
crisis exposed regulators’ and market participants’ limited information about the risks
that indirect exposures might pose. It also revealed little theoretical understanding of
the relationship among interconnectedness, risk-taking, and financial stability.

This paper proposes a mapping of interconnectedness in the global stock market.
We use a measure of statistical interconnectedness, based on econometric analysis of
comovement patterns (see, e.g., Billio et al., 2012; Diebold and Yilmaz, 2014). The
comovement of stocks can be summarized by a country- and sector-wise grouping of
stocks, and this approximation provides significant information for risk management
and strategic portfolio analysis. The paper also presents a framework to monitor the
changes in interconnectedness within and between markets, and to identify transmis-
sion channels and vulnerabilities.

This paper contributes to efforts to redefine our understanding and knowledge of
interconnections in the financial system, where they stem from, and how they can be
evaluated and monitored. Interconnections between financial markets play a dual role.
On the one hand, they can absorb shocks and lead to greater robustness. They can also
propagate shocks and create greater fragility. Supervisors have traditionally focused
on interconnectedness as measured through direct exposures, which is constrained by
the availability of reliable granular data. A more intuitive way is to investigate the em-
pirical correlation of assets and the resulting implied network structure. This network
helps describe the financial system, its systemic structure, and possible contagious ef-
fects. The network can provide important insights into system-level effects and help
uncover changes in market microstructure, bubble formation, and changes in business
models as some market participants withdraw from certain activities and others take
their place.

This paper builds on existing literature in several ways. First, it is related to the
general literature that discusses the positive effects of market openness on business
cycle synchronization (see, e.g., Brooks and Del Negro, 2004; Beine and Candelon,
2011; Buch et al., 2005). These effects depend on similarities in industry structure,
although this is often overshadowed by country-specific effects (Imbs, 2004). There
are also studies on the transmission of shocks in a crisis situation. In such a situation,
the determinants for spillovers can change relative to what is observed in normal times.
See, for example, Fratzscher (2012) for an analysis of the 2008 crisis and Kaminsky
and Reinhart (2000) for an analysis of crisises in the 1990s.

The last two decades have seen the emergence of literature that examined only the
financial aspects of comovement and contagion. Analogous to the debate on business



cycles, the effect of openness on financial markets has been analyzed. The transmis-
sion mechanisms in financial markets have been shown to be relatively stable over time
(Rigobon, 2003; Bracker et al., 1999). However, structural similarity of countries ex-
plains only partially the level of comovement between them. This resulted in a debate
about the influence of global sectoral factors. Previous results hint at an increase in the
importance of these factors (Dutt and Mihov, 2013; Bekaert et al., 2009, 2011). Forbes
and Chinn (2004) finds that cross-country factors and global sectoral factors both are
important determinants of stock returns. They also note that changes in global linkages
over time might make it difficult to disentangle different influences on asset market
comovement.

The analysis of comovement within a given market (see, e.g., Barberis et al., 2005;
Green and Hwang, 2009) tries to explain the behavior of individual stocks, but this
is not the case in the analysis of comovement across markets. Most approaches to co-
movement on the global level have focused on the analysis of stock market indices (see,
e.g., Baur and Jung, 2006) or other smaller samples of sectoral indices. A wide range
of methods has been applied, among these unit root and cointegration tests, vector
autoregression models, correlation-based tests (Forbes and Rigobon, 2002; Fry et al.,
2010), causality tests (Billio et al., 2012), as well as different GARCH-based models
(Engle, 2002). The general problem that all these approaches deal with are the special
statistical features of the asset returns. The volatility of the returns is clustered and
its distribution follows a power law. It follows that similarities in stocks’ returns are
difficult to disentangle from similarities in the volatility patterns.

This paper is also related to literature that applies methods of network analysis
to financial economics (see Battiston et al., 2016; Summer, 2013). For example, the
comovement of stocks has been analyzed as a network phenomenon. In these ap-
proaches, the similarity of stock performance is interpreted as information about link-
ages between stocks (Mantegna and Stanley, 1999; Song et al., 2011; Gopikrishnan
et al., 2001). Furthermore, alternative models have been introduced to quantify sta-
tistical interconnectedness, such as the Variance Decomposition method (Diebold and
Yilmaz, 2014) and non-negative matrix factorization method (Brunetti et al., 2015).
These approaches deal well with the complexity of financial markets. They typically
tend to analyze indices, indicators, and larger sets of stocks. One weakness of these
studies might be that they are mostly of a more exploratory nature and that statistical
significance is often difficult to assess (see for example Curme et al., 2015; Tumminello
et al., 2011). However, Kenett et al. (2012) shows that network approaches have the
potential to describe the dynamics of market comovement on the global and local level.
Recent work has also emphasized the role of interconnectedness in the financial sys-
tem as channels of contagion (Gajurel and Dungey, 2015; Diebold and Yilmaz, 2014;
Levy-Carciente et al., 2015; Glasserman and Young, 2015a,b), and added insights from
network science tools.

The methodological framework presented here can quantify the evolution of in-
terconnectedness in the global market over time, and shed light on the importance of
sectoral factors and the extent of remaining regional segregation. The paper also shows
aspects of market interconnections can be overlooked by using market indices only.
This paper investigates a set of nearly 4,000 stocks from 15 countries. We analyze
the dependencies of these stocks by assessing significant dependencies on the stock



level, then aggregate hierarchically by sectoral and regional dependencies. Findings
are first analyzed for the entire sample of 2006-13, then examined for dependencies in
13 overlapping time windows. The market is usually segmented by region but in times
of economic stress this segmentation fades. The paper also shows sectoral effects are
present and can be volatile. The financial sector has for some time played a role in
connecting markets, but, in general, the data show a greater influence from the energy
sector and materials sector.

The remainder of the paper is organized as follows: Sections 2 and 3 describe the
stock market dataset, the methodology to measure interconnectedness in terms of de-
pendencies between stocks, and how this information can be used to derive networks.
Static and dynamic results are presented in Sections 4 and 5, respectively. In Sec-
tion 6 we study the structure of the derived networks, and investigate the presence of
geographic or sectorial factors.

2. Data

The data used in this study consist of the daily closing prices of stocks listed on ex-
changes in Australia, Brazil, China, Spain, France, the United Kingdom, Hong Kong,
India, Japan, South Korea, the Netherlands, Singapore, United States, Canada, and Ger-
many. Data were obtained from Standard & Poor’s Compustat and Thomson Reuters
Corp. We chose stocks that were components of the individual country benchmark
index, and were continuously traded with sufficient volume throughout the sample pe-
riod. Excluded were stocks with price behavior or market capitalization similar to
penny stocks. Also excluded were stocks that were exempt from trading or traded with
negligible volumes for more than 10 days, and stocks with negligible trading volume
for more than 8 percent of the total trading days. Some countries had a large number of
stocks that met our criteria. For this reason, we selected the 500 stocks with the high-
est market capitalization from exchanges in India, Japan, China, and Korea. We chose
U.S. stocks that are in the S&P 500 index. For the UK, we selected stocks in the FTSE
350. The Global Industry Classification Standard (GICS) sector designation for each
stock was used, when available. When GICS was not available, we used the TRBC
classification from Thomson Reuters. The number of stocks by country and sector is
summarized in Table 1.

Our observation period starts on 1 July 2006 and ends on 30 June 2013. The eight
years of data results in 7 = 1329 trading days and N = 3828 stocks. For stocks in
all countries, we use data from trading days when the stock markets in London and
New York are both open. Because the stocks are traded in different time zones there
are limitations in the synchronization of the returns. The international date line in
the Pacific necessitates that Asian countries finish trading first in the day, while the
Americas finish last. The correlation of daily returns will naturally underrepresent the
amount of comovement between the most distant countries because trading takes place
without an overlap in time. To address this issue, we use two approaches: To analyze
the long-run effects, we calculated weekly returns for all time series, which leaves us
with 77 = 365 observations. To analyze short-run effects, we calculate a correction
factor to use with the daily data; details are explained in Section 3.2.



Country| Energy Material. Indus.  Cons.D. Cons.S. Health Finan. IT Telec Util.
AUS 12 21 25 17 7 8 29 5 2 3
BRA 2 11 10 13 5 1 5 3 2 14
CHN 10 95 134 90 36 42 36 40 0 17
ESP 1 9 15 6 4 4 11 3 1 6
FRA 6 15 47 53 16 18 42 47 4 9
GBR 17 19 69 54 21 10 68 26 3 8
HKG 1 2 16 8 2 1 37 3 2 6
IND 7 125 105 116 37 28 21 51 4 6
JPN 3 35 125 115 20 17 24 157 3 1
KOR 2 91 101 102 27 35 11 125 4 2
NLD 2 3 17 8 9 0 12 9 1 0
SGP 0 0 11 3 1 1 18 2 2 1
USA 38 26 65 73 43 43 81 55 6 31
CAN 50 43 19 13 11 3 40 [ 6 8
GER 6 11 50 29 8 22 15 33 5 4

Table 1: Number of stocks by sector and country. Sectors are: Energy, Materials, Industrials (Indus.), Con-
sumer Discretionary (Cons. D.), Consumer Staples (Cons. S.), Health Care (Health), Financials, Information
Technology (IT), Telecommunication Services (Telec.), and Utilities (Util.). Countries are: Austria (AUS),
Brazil (BRA), China (CHN), Spain (ESP), France (FRA), United Kingdom (GBR), Hong Kong (HKG), India
(IND), Japan (JPN), South Korea (KOR), Holland (NLD), Singapore (SGP), United States (USA), Canada
(CAN), and Germany (GER). Sources: Standard & Poor’s Compustat, Thomson Reuters Datastream, au-
thor’s analysis.

The remainder of this paper uses the returns time series derived from the log price
changes of the stocks, r; = log(p;) — log(p;-1). The number of stocks per country
varies from 39 for Singapore to 500 for the larger countries (see summary statistics
presented in Table 2. The markets in China, Korea, and India have imposed limits
on the maximum daily price changes. In Korea, for example, the limit for the daily
price movement was 15 percent. The distributions of the returns time series for these
countries are truncated. This does not mean that the volatility is necessarily lower (see
sample variances in the table). All time series of asset returns are heavy-tailed, as
the values for the kurtosis indicated. The tail exponent was calculated with the Hill
estimator, and the values are mostly slightly greater than 3.

To uncover dependencies between stocks in different countries by sector, it is nec-
essary to test if stocks within a specific sector are more correlated than stocks from
random sectors. The far right columns in Table 2 show the results from calculating the
average of all within-sector correlations and the average of all between-sector correla-
tions. The average of the first is significantly higher for all countries except for China.
The dispersion and level vary by country. In Japan, only two sectors show a higher than
average between-sector correlation than the within-correlation (see also Figure A.1 in
the appendix).

3. Estimating Inter-market and Intra-market Interconnectedness

3.1. GARCH filtering process

Although an analysis of the correlation of the returns can be informative, changes
in volatility in all time series will govern the results. The long memory in volatility
also complicates the assessment of significance bounds. Since the volatility in stock
markets around the world is synchronized, this prevents inferring information about



N var(r)  Kurtosis Tail Average correlation  Average correlation
stocks exponent within sector all stocks
Country
AUS 129 0.00064 18.7 3.47 0.35 0.18
BRA 66 0.00063 144 3.77 0.42 0.22
CHN 500  0.00105 5.0 - 0.27 0.25
ESP 60 0.00057 12.1 3.61 0.38 0.23
FRA 257 0.00059 26.4 332 0.22 0.14
GBR 295 0.00064 25.6 3.40 0.22 0.16
HKG 78 0.00082 18.0 3.35 0.44 0.20
IND 500  0.00114 8.5 - 0.31 0.25
JPN 500  0.00120 15.1 2.99 0.37 0.31
KOR 500  0.00124 8.0 - 0.36 0.27
NLD 61 0.00059 25.7 3.38 0.40 0.25
SGP 39 0.00052 38.1 3.37 0.48 0.29
USA 461 0.00065 242 3.25 0.24 0.21
CAN 199  0.00070 21.1 3.26 0.23 0.15
GER 183 0.00074 17.1 3.44 0.25 0.15

Table 2: Statistics for the Returns Time Series. We calculated the variance, kurtosis and the tail exponent
from all returns in each country. In three of the markets, the maximum daily price change is constrained
(caps), which permits the analysis of the tail exponent. The far right columns show the average correlation of
stocks within a given sector is always larger than the average correlation of all stocks within a given country.
Sources: Standard & Poor’s Compustat, Thomson Reuters Datastream, author’s analysis.

which stocks show similarities in return on a more general level. There are different
approaches to filter returns time series, such as treating the returns within a multivariate
GARCH model. This model simultaneously estimates the parameters for conditional
variances and the mutual influences of the returns time series.

However, models of this kind are difficult to use with a large number of stocks (see
also Engle et al., 2008). A robust and faster filtering method for large datasets is the
conditional variance from a univariate GARCH model.

That means that we assume that the returns follow a random process with & =
v, Vh; where v, is white noise and

q p
h = agy+ Z @i + Zﬁihz—i- (1)
im1 P

We will make use of the conditional variance , to calculate filtered returns® such that

S il )
H) = o )

for all stocks i. We obtain time series with unit volatility.

21t should be noted that also the covariances of /, can be used to analyze interconnections, a short com-
parison of these two measures can be found in Appendix C.



The parameter #, is a useful filtration for the given returns time series. Except for a
few exceptions for stocks from developing markets, this model fits well and yields the
expected coeflicients for @ and S close to 0.1 and 0.9. Apart from negligible exceptions
for some stocks from developing countries, p,q = 1 is sufficient to describe the vari-
ance process.’ Figure A.2 (in the appendix) shows the averages of the autocorrelation
functions for the raw and filtered returns that result from this procedure.

3.2. Estimation and correction for non-synchronous trading

By “de-garching” the returns, a time series is obtained that can be treated in an
almost standard regression framework. Running a pairwise regression of all the filtered
returns generates a measure for the comovement.* The only econometric issue of these
time series is that the residuals are not normally distributed, which we account for by
using a robust regression (Lange et al., 1989) with t-distributed errors. (See also Figure
A.3 in the appendix for details on the distributions of returns and residuals).

To measure interconnectedness, we estimate pairwise the dependencies for all pairs
of stocks (i, j)

rl (i) = Bos; + Brijr! (). 3)

Next, we focus on stock-to-stock relationships that are significant with respect to a
certain threshold. We will use the p-values that can be obtained from this estimation,
which we store in a matrix p;;. The rows and columns are ordered by countries.’

To test the robustness of these results, which depend on the univariate de-garching,
we compare our results with those of a multivariate GARCH model. These models can
only be estimated with a limited number of time series. We use the Dynamic Condi-
tional Correlation (DCC) model with pairs of stocks from the sample and compare the
correlation implied by the DCC model with the correlation of our filtered returns. The
results are indistinguishable for long windows. For windows of 190 days, the results on
the stock level differ, but the differences are marginal and unsystematic. (see Appendix
B).

A challenging issue is the time difference in trading hours across markets. It leads
to problems in determining the true dependencies between stocks from different mar-
kets. For stocks from Europe, this is a minor issue because UK trading time differs
from other European countries by only one hour. The U.S. market opens before EU
markets close, for a difference of six hours. Calculating the dependencies between
stocks traded in the Americas and Asia is most problematic. The dependencies are bi-
ased downwards because the time series are asynchronous (see also Martens and Poon,
2001). In general, this can be dealt with in two ways: by using tick data and calculation

3We checked the robustness of the results by omitting the 83 stocks where the fit of the GARCH model
was least satisfactory. We could not find any meaningful effect from this.

“4It would, of course, be possible to proceed from here by calculating correlation coefficients. However,
due to the non-normality of the returns the standard approach for calculating significance levels would not
apply. Generalized approaches that provide estimated of significance levels of correlation coefficients exist,
but our calculations suggest that for large amounts of data it is easier to obtain significance levels from a
robust regression.

SFor the time horizons in this study, we do not observe significantly negative correlation.
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Figure 1: Range of Correction Factors by Time Zone Differences. The plot shows the difference between the
average estimated dependency of stocks on the daily level versus the weekly level (see eq. 3.2). Significant
differences between the estimated dependencies arise when the markets are more than three time zones apart.
Less-developed markets with below average comovement show a lower difference than developed markets
(this explain most of the dispersion for the two far right box-plots). Sources: Standard & Poor’s Compustat,
Thomson Reuters Datastream, author’s analysis.

of synchronous pseudo closing prices, or by time aggregation. The first method would
require large amounts of data and even then it would be difficult to find a specific time
each day when price quotes for all stocks would be available. The second method is
easier but limits the time resolution for our analysis.

By aggregating several days of returns, the timing mismatch becomes less impor-
tant. But daily data are essential in this analysis because financial markets react quickly
to new information. To work with daily data, a correction must be applied for the bias
described above.

The estimated daily dependencies from stocks traded in different stock exchanges
and time zones are slightly biased but still informative. A correction factor is calculated
on a country-to-country basis by comparing the estimation results from the daily data
with the estimation from the weekly data for the same time period. This procedure is
related to the works by Christensen et al. (2010) and Hayashi and Yoshida (2008).

We calculate a correction factor for the p-values in the following way: let pr" and
pré be N x N matrices where the elements are the average p-values on a country-to-
country level (the matrix contains blocks with identical values resembling all pairs of
countries). After adding 1 to each element of these matrices, we can calculate the
element-wise (notation: ./ ) ratio of the p-values of the weekly and daily estimates.

prij =+ p}) ./ (1+pf). (4)
Then, the correction factor pc can be calculated as
pcij = min( 1, prij—(diag"(pr))), (5)

where the second term corrects for differences in the p-values that are not due to non-
synchronous trading times (we denote by diag* the diagonal blocks of pr capturing the



dependencies between stocks within one country). The max and min ensure that all
p-values stay within the [0, 1] band. The corrected p-values can then be obtained as

Dij :max(O, ((1+pfj)0PCij)— 1)~ ©)

To summarize, this procedure assumes that overall estimates from the daily and the
weekly data are similar and differences are likely to be a result of non-synchronous
data. The ratio of the slightly transformed p-values is used to correct for this issue
so interdependencies that were otherwise discarded as, say just below the 10 percent
confidence bound, will now be accounted for as significant if the correction factor for
this country pair is sufficiently smaller than 1.

The calculated correction factors are presented in Figure 1. As expected, the cor-
rection increases with geographical distance, even though this does not fully explain
the issue. The correction remains relatively small for distant, less-developed markets
where the comovement is low anyway (which explains the wide range of the far right
boxplots).

3.3. Visualizing and quantifying interconnectedness

In a financial network, entities such as banks, financial institutions, central coun-
terparties, and traders are considered nodes. Their relationships in interbank lending,
contractual obligations, and counterparty exposures define the links that connect them.
Stocks and their relationships can also be expressed as a network. Each stock is a node
and its estimated interdependencies show whether, and how strongly, the nodes are
connected to each other. This information is stored by using adjacency matrices, where
the entries in row 7 and column j indicate the strength of the connection between the
respective nodes (see Figure 2).

Because the p-values contain this required information and their distributional prop-
erties allow a useful weighting, it is relatively easy to obtain adjacency matrices. The
matrices of p-values are converted to adjacency matrices A by removing all entries
where the significance level for the stock-to-stock dependence is below a certain thresh-
old y. In the following, we use y > 0.1 if not stated otherwise. The estimated signifi-
cance level can be used as a measure of connection strength by defining

Ajj o< (y — pij)- @)

This adjacency matrix has a weighted positive entry if stocks i and j are significantly
linked, measured by the estimated conditional correlation.

To uncover the dependencies between the markets on a sector level, the stock level
dependencies are used to describe the resulting network on a sector to sector basis.
The averages of the p-values of the relationships of the stocks in a specific sector in
one country are used with stocks in a specific sector in another country to map the
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sector-by sector dependencies.® The translation into this second adjacency matrix is
done in the same way but the dimension is reduced to 150 x 150 (15 countries, 10
sectors). Sectors in countries that consist of fewer than three stocks are excluded from
further analysis.

Finding useful visual representations of adjacency matrices is a complex process
and the equivalent of finding a good dimensional reduction of a N-dimensional system,
where N is the number of nodes. This process is also related to the problem of commu-
nity detection in graphs, which is a high-dimensional clustering problem.” We graph
our networks by applying the widely used algorithm developed by Hu (2005). This
algorithm arranges nodes in a two-dimensional space in such a way that the total edge
length of the graph is minimized, which shows the most pronounced communities of
nodes within a graph. This specific algorithm uses the physics of repulsion to generate
a visualization.

Once a visualization of the network is computed, it is a starting point to identify the
general structure of the network and groups of stocks from specific markets or sectors
that comove most. We can compare the number of links between stocks (nodes) in
the same group with the number of links between them as if these were random. This
network feature is called modularity, see e.g. Newman (2006). Denote by ¢ the groups
of nodes, then the number of links between these groups is given by

1
ci,cj) == ) A;io(ci,cj), 8
%( ) EZ,: j0(cic)) ®)
where ¢ in Kronecker’s delta and A is the adjacency matrix. The expected number
of links can be derived from looking at the node and the fraction of links to each
node in the other group. If node i has degree k; and the total number of links is 2m
the probability that it has a link to j is k;/2m. Hence, the expected number of links
between nodes in the same group is

l @6(0 ci). )
2 - 2m "

Taking the difference of these two expressions and normalizing by the number of edges
yields the modularity Q of a network

1 k,k
0= % ;(A,/ - 2—’;)5(61‘,6']‘)7 (10)

which describes in how far nodes of the same group are connected with each other.
In order to compare different networks, we also calculate an associativity coefficient
which is given by AC = Q/Qyax-

6The averages of the p-values are not p-values anymore. However, in this case it makes sense to use these
averages because of low dispersion within the groups of stocks. Also note that in Table 3 median values
are used for the comparison because the distribution of p-values for all stocks within one country is slightly
skewed. On the sector level, however, the difference between the mean and the median is small, the latter
value is mostly slightly higher and would tendencially lead to more significant links.

7See also the book by Newman (2010) for an in-depth introduction to network science.
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4. Static analysis of global interconnectedness

The results obtained from analyzing the weekly returns are depicted in Figure 3.
Stocks from Western markets form a hairball in the middle of the network, showing
they are highly interconnected. Within this hairball, the mixing is strongest within the
European markets, while otherwise regional structures remain visible. The markets of
China, Japan, and India are only loosely connected to the central component of the
network. These results can also be compared with those obtained for the stock level
interactions (see Figure D.1 in the appendix), to verify that the aggregation procedure
does not influence these findings.

Even in the densely connected middle, sectors from the same market are mostly
grouped close to each other, which is a sign of remaining regional segmentation. It is
more instructive to observe nodes that are separated from others with the same color,
such as the German materials sector or the British and French energy sectors. Their
surrounding nodes indicate sectoral effects are also at work here, and the underlying
stocks from the materials or energy sectors are as well connected to similar stocks in
other countries as to stocks in their home markets.

The overall connectivity in this network is shown by countries and by sectors. This
can be achieved by summarizing the number of links between them or evaluating how
often the average p-value for a sector-to-sector pair is higher than 0.1. This can be
aggregated by country and by sector as shown in Figure 4. The left panel confirms the
visual impression of a very connected U.S. stock market. Most sectors in European
markets comove in a significant manner. The right panel shows clear differences on
the sector level. Stocks from the financial, industrials, materials, and energy sectors
show more interconnections than stocks from other sectors, and this is consistent for
all countries.

An analysis of individual stocks differs from an analysis of stock indices. We illus-
trate this by applying the same estimation methodology to stock market indices for the
15 countries. The weekly index returns are de-garched and p-values of the pair-wise
estimated dependencies are presented in Table 3. The results can be compared with
the median of the p-values for the stock-wise analysis and the median when we hier-
archically average within sectors and then overall sectors within a country. While the
indices are all highly dependent, the stock level shows lower median p-values, indi-
cating pronounced heterogeneity in stock-to-stock dependencies, which are in no way
captured by a market index analysis.

5. Dynamic Analysis of Global Interconnectedness

During the eight years covered by the dataset, global economic and political events
occurred that are likely to lead to significant fluctuations in comovement across mar-
kets. The 2007-09 financial crisis, the euro crisis, and Japan’s 2011 tsunami are a few
examples. A dynamic analysis is also necessary to show changes in global financial
integration. The data resolution can characterize stock market dependencies in the or-
der of months. A rolling window approach that uses 190 days of data in 13 time steps
with a 95-day overlap. The same methodology is applied to daily data with timing
corrections for the p-values as described in Section 3.2.
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The layout was performed in Gephi using the Yifan Hu algorithm. Sources: Standard & Poor’s Compustat,

Thomson Reuters Datastream, author’s analysis.
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Figure 4: Number of Significant Links by Country (left) and by Sector (right). We count the number of
significant links between sectors and aggregate by country and by sector based on the estimation of the
weekly data. The United States and European countries (which are slightly favored by their large number)
are the most connected ones. The four Asian countries (excluding Singapore) are least connected. When
aggregated by sectors, stocks from the financial sector, followed by the materials sector and energy sector,
are the most connected stocks. Sources: Standard & Poor’s Compustat, Thomson Reuters Datastream,
author’s analysis.

Figures 5 (a—d) display four of the 13 resulting networks. The network in the top
left panel of Figure 5 is different from the others. American and European stocks form
individual groups within the network, although there are multiple links between them.
Some Asian markets are loosely connected to the European market. Chinese stocks
show strong internal comovement but is not significantly linked to other markets.

The network changes completely at the end of 2008 with the growing financial cri-
sis. Stocks from all developed markets form one connected component. Some grouping
into American, European, and Asian stocks remains, but the borders blur. The markets
of South Korea, China, and India appear as weakly connected satellites. The bottom
left panel of Figure 5 shows in 2011 there is stronger comovement with Asia, with
markets almost separate from the European-American component. Links now run be-
tween American and Asian markets, while comovement between European markets
becomes more heterogeneous. This may reflect the euro crisis, which affected some
but not all European countries. By 2012, the network shows comovement almost back
to pre-2008 levels. Some stock markets are very much connected to U.S. stocks, but
many sectors are no longer part of this connected core.?

For a deeper look at the origin of this variation, we look at the number of links
between markets on a country and sector level, similar to Figure 4, but with the addition
of the time dimension. The top panels of Figure 6 show that the number of links
between stock markets is low at the beginning and at the end of the sample period. It
is possible to observe two peaks where many links exist between markets, at the end of

8For comparison, networks with links aggregated on the country level are shown in Figure D.2 in the
appendix.
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Figure 5: Dynamics of Sector Dependency Networks. We show four networks that are representative of the
dynamics in 13 time windows. The dates are the mid-points of 190-day windows. Nodes (sectors) from
the same country carry the same color. Links represent an average p-value of 0.1 or higher. The network
shows growth and contraction during the peak of the financial crisis. Sources: Standard & Poor’s Compustat,
Thomson Reuters Datastream, author’s analysis.
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Figure 6: Number of Significant Links Over Time by Country (left) and by Sector (right). We count the
number of significant links on the sector level and aggregate by country and by sector. The two top panels
show the absolute number of links, the bottom panels show the fraction of links in the respective time
window. The numbers are color coded according to the scale on the right. On the country level, we observe
an overall wave-like pattern in the number of links with slight increases for the United States, Germany, and
the Netherlands over time. The fractions of links by country are in fact relatively stable. Also the breakdown
by sectors shows a wave-like pattern. A slight difference to the analysis of the weekly data (see Figure 4) is
the daily data shows the energy and materials sectors as the most connected, not the financial sector. Sources:
Standard & Poor’s Compustat, Thomson Reuters Datastream, author’s analysis.

2008 and again around 2010/2011.

There seems to be some synchronization in the dynamics of the number of links,
both by country and by sector. It is possible to calculate the fractions of links for each
time window, which are presented in the bottom panel of Figure 6. This normaliza-
tion can help detect shifts in the relative influences of specific countries or sectors.
The country-wise view in the left bottom panel shows the relative number of links is
stable for most countries. Only the UK and Hong Kong show fluctuating behavior.
The number of links for the United States is steadily increasing towards the end of
the sample period. The bottom right panel with a sectoral analysis shows more inter-
esting developments. Only in 2007 and 2008 is the financial sector a driving force for
interconnections. Much more dominant are links with the energy and the materials sec-
tors, which gain influence throughout the sample.” Stocks related to consumer goods
become less important over time and the health industry is not relevant for the entire
sample period.

9Due to the low overall number of links, the values (fractions) for the first time window are noisy and
discarded from our discussion.
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Nodes Degree Clustering p. Length  Density
n (9 & (L)
Window
Jul 06 — Jun 07 26 3.885 0.018 0.010 0.155
Jan 07 — Dec 07 52 7.077 0.029 0.032 0.139
Jul 07 — Jun 08 66 8 0.034 0.026 0.123
Jan 08 — Dec 08 78 9.743 0.036 0.062 0.126
Jul 08 — Jun 09 84 9.869 0.032 0.052 0.119
Jan 09 — Dec 09 53 10.452 0.035 0.069 0.201
Jul 09 — Jun 10 64 10.297 0.031 0.067 0.163
Jan 10 — Dec 10 60 10.833 0.034 0.053 0.184
Jul 10 —Jun 11 42 7.524 0.034 0.022 0.184
Jan 11 — Dec 11 72 13.569 0.036 0.040 0.191
Jul 11 —Jun 12 75 13.680 0.038 0.045 0.185
Jan 12 — Dec 12 36 8.222 0.037 0.086 0.235
Jul 12 —Jun 13 36 6.361 0.029 0.026 0.182

Table 4: Summary Statistics for Networks Calculated Using Dynamical Analysis. For each window we
calculate the number of nodes, n , average degree, (k), average clustering coefficient, (C), average shortest
path for the giant component, (L), and density. Sources: Standard & Poor’s Compustat, Thomson Reuters
Datastream, author’s analysis.

The ranking of the most-connected sectors varies with the data frequency. For
example, the analysis based on weekly data showed financial stocks had the most links,
followed by industrial stocks. When daily data and shorter time windows are used,
stocks from energy and materials sectors dominate the linkages. That indicates fast-
moving energy and raw materials markets influence stocks in these sectors more than
the factors responsible for comovement with the financial and industrial sectors

The results demonstrate the existence of sectoral influences. While the extent of
comovement fluctuates, their relative influence is relatively stable. The frequency of
the data has a significant influence on the visibility of these sectoral influences. The
speed and degree of stock comovements across sectors and across borders varies across
time horizons.

The general structure of the network can change over time. Table 4 illustrates the
number of nodes fluctuates between 26 and 84. The average number of links of each
node, the degree, is related to the number of nodes. This relationship is only linear
and indicates the network is undergoing more changes than just size. A qualitative
proof of this is the clustering coefficient presented in the middle column. Clustering
measures how often two nodes B and C, which are both connected to node A, will
also be connected to each other. Figures for clustering in these networks are low and
relatively constant. This shows the networks have some structure and everything is not
always connected to everything else. This is confirmed by the changes in the average
path length, which do simply vary with the network size. Their changes are caused by
the contractions and diversions of single components of the network over time. The
density describes the fraction of existing versus possible links between nodes. These
values are high because of many links between sectors within countries that are rather
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stable. We see the highest values during the financial crisis, when the network is large
and very connected, and in 2012, when the network is smaller and dense.

These findings indicate fundamental changes in the network structure which cannot
be fully explained by the sectoral influences described above or by changes within
countries. The next step is to compare sectoral and regional influences.

6. Mapping the Network Structure of the Global Market

A visualization of the network of stock market interconnections mostly shows
stocks from specific regions forming connected groups. We want to quantify this and
calculate the assortativity coefficient for different hypotheses. In this case, hypotheses
are formed by assuming that certain countries or sectors are part of specific groups. We
can then check if the classification of these groups explains the connectivity between
the nodes in our network better than the assumption of random connections (given the
degree of each node). The result is the assortativity coefficient. It takes the value 1 if
the actual distribution of links is perfectly described by the assumed grouping, and 0 if
the actual distribution of links is random and thus not explained at all by the grouping
(see also Section 3.3).

We consider several hypotheses for regional groups in the network. One hypoth-
esis proposes the network consists of a group that contains all Western countries and
another group with all Eastern countries. An alternative hypothesis explains network
structure by dividing the network into three groups — America, Europe and Asia. The
assortativity coefficients over time for the two hypotheses are in the two left columns
of Table 5. The latter hypothesis, which divided the network into three groups, results
in the best description of the network. This structural grouping is also better than a
grouping into developed and developing stock markets (middle column). The segmen-
tation into three regions explains the network imperfectly. This observed segmentation
of the network structure is higher in times without severe crisis, that is until 2008 and
after 2012. From 2009 to 2011, the network structure is weakened and more volatile.

For comparison, we also calculate the assortativity coefficient for assuming that
the most connected sectors of energy, materials, and financial stocks form connected
groups. This is not a good description of the network, and the results are equally
poor if links within countries are discarded. A grouping that combines sector with
country characteristics, shown in the far right column, does not lead to better results
(we assume that the financials, energy, and materials form one group in each region
and that all other stocks are in group 4).

In the case of the static analysis, countries show heterogeneous patterns in the
amount of comovement. A similar heterogeneity is observed on the sectoral level,
but has almost no explanatory power in our analysis of group structure. This indicates
the links on the sector level are not as assortative as on the country level. We have to
look at the 10 x 10 matrix of sector to sector links to find out the structure of these
links.

Figure 7 is a color-coded representation of these relationships. We counted the
number of significant links between the sectors in each country and aggregate for all
13 time windows. Next, the sectors are sorted by the total number of links from top to
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West vs America Developing vs  energy/materials/utility ~ Sectors and
East®  Europe Asia®  Developing® financial rest” regions”
Number of groups 2 3 2 3 4
window
Jul 06 — Jun 07 0.30 0.38 0.29 0.06 0.06
Jan 07 — Dec 07 0.21 0.38 0.19 0.03 0.04
Jul 07 — Jun 08 0.22 0.36 0.20 0.04 0.04
Jan 08 — Dec 08 0.25 0.36 0.21 0.02 0.03
Jul 08 — Jun 09 0.20 0.29 0.17 0.01 0.01
Jan 09 — Dec 09 0.20 0.23 0.16 0.01 0.00
Jul 09 — Jun 10 0.20 0.23 0.16 0.00 0.00
Jan 10 — Dec 10 0.16 0.19 0.15 0.00 -0.02
Jul 10 —Jun 11 0.27 0.28 0.26 0.02 0.02
Jan 11 —Dec 11 0.22 0.20 0.13 0.00 0.00
Jul 11 —Jun 12 0.20 0.18 0.11 0.00 0.00
Jan 12 — Dec 12 0.24 0.26 0.22 0.01 0.00
Jul 12 —Jun 13 0.27 0.31 0.26 0.03 0.03

Table 5: Modularity of the Network Over Time. We calculate the assortativity coeflicient for five hypotheses
for all 13 time windows. The results show that the network structure partly resembles a regional cluster-
ing (left columns) while international sectoral structures do not explain the observed networks (far right
columns). The different hypotheses correspond to the following groups: (A) 1: BRA ESP FRA GBR USA
CAN GER, 2: CHN HKG IND KOR SGP JPN (B) 1: BRA USA CAN, 2: ESP FRA GBR GER NDL, 3:
CHN HKG IND JPN SGP KOR AUS (C) 1: AUS ESP FRA GBR JPN NLD USA CAN GER HKG, 2: BRA
CHN IND KOR SGP (D) 1: energy, materials, util., financials 2: other sectors (E) 1-3: sectors from D in
countries like B 4: all other. Sources: Standard & Poor’s Compustat, Thomson Reuters Datastream, author’s
analysis.
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Figure 7: Number of Significant Links for all Time Windows, Sector to Sector, Sorted. The figure shows
a color-coded count of the number of links between all combinations of sectors, regardless of the country.
The sector names on the horizontal axis are the same as on the vertical in an abbreviated form. The row and
column number of each sector has been arranged such that the sum over rows (or columns) is descending.
We observe that we do not have significant structures (cliques) composed of combinations of specific sectors,
but that the distribution of links on the sector to sector level is roughly the product of the distributions of
links on the sector level. Sources: Standard & Poor’s Compustat, Thomson Reuters Datastream, author’s
analysis.
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bottom (and/or left to right). This process shows there is no grouping on the sectoral
level. A core of very connected sectors is observed, namely the energy sector, materials
sector, and to a slightly lesser extent, financial sector. The underlying stocks, however,
do not only comove with stocks from the same sector, they often also comove with
stocks from related sectors. This core is emanating comovement onto other sectors.
This means the connections between stock markets heavily rely on these three sectors,
but the connection is not necessarily most intense within one sector, but between related
sectors. Visualizations on the previous pages (e.g. Figure 3) show many cases where
the links between different groups are characterized by such kind of dependencies.

The dynamics of the stock market network are the result of a complex mix of
changes in market comovement that are visualized by the contraction and separation of
regional components of the network and by sectoral effects, which are more stable. The
regional aspects are most visible in the network but they explain the network structure
only in part and less in times of market stress. It is important to look at interdependen-
cies on a lower level of aggregation, namely sectors, which are heterogeneous in their
ability to connect markets.

7. Conclusions

This paper presents an empirical investigation of comovement, as a statistical mea-
sure of interconnectedness, across 15 representative stock markets. The analysis shows
that for asset markets, a global financial market, in terms of cross-country statistical
interconnectedness, exists only within certain limits. We observe a mixture of regional
and global effects, with the balance between the two fluctuating over time. For most of
the time, regional segregation remains visible, even though in times of stress markets
contract to a unisonous behavior. During such contraction periods, some countries still
retain a high level of autonomous behavior.

A dimensional reduction of the dependencies in the global financial markets can be
achieved by describing the markets in terms of sectors. This can be useful for analyzing
a large number of assets in making strategic portfolio decisions or monitoring financial
stability. The model presented here is a way to quantify company-specific risks. First-
order risks arise from direct interactions on the company level. Second-order risks arise
from direct interactions on the sector level. Both risk channels must be considered
when analyzing the risks of a given company based on regional, global or systemic
factors.

Previous research focused on factors that determine the level of stock market co-
movement for various countries. The results, however, were not always as convincing
as similar studies on the synchronization of business cycles. Our findings shed some
light on this debate: the fine structure of stock market comovement shows significant
time variation. Sectoral effects do exist, but they influence only parts of markets. These
effects are also overshadowed by sectoral bubbles or collapses such as the financial cri-
sis. Tracking the sectoral interconnections over time, we find a shift from the financial
sector, to the materials and energy sectors. A similar effect has been found during the
dot-com bubble of 1997-2000 (see also Imbs, 2004; Raddant and Wagner, 2016). These
help explain why identifying stable country-specific determinants for asset market co-

22



movement is difficult. In fact, country determinants are probably at best secondary
effects.

This paper presents a new methodology that can help quantify statistical intercon-
nectedness among a large number of assets in many markets. We quantify within and
between market interconnectedness, and use network theory to present, quantify, and
monitor these relationships and how they change in time. A future extension of this
work could develop hierarchical stress test models to describe the interconnections
of single stocks based on sector- and country-based influences and macroeconomic
shocks. Future work could also use a model with high-frequency data to help monitor
financial stress and changes in spillover behavior.
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Appendix A. Statistical Properties of the Data

For most markets, the correlation of stocks within a sector is much higher than the
overall correlation. Figure A.1 shows details for seven countries. The overall correla-
tions are shown as a fitted normal distribution and the single sector averages are shown
as histogram bars. The dispersion of measured correlations is smallest for the United
States and highest for Japan. The latter, together with China and Korea, are the only
countries where the sector effects are weak.
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Figure A.1: Distribution of Between-Sector Correlations of Stocks (red curve) versus Average Correlations
Within the Same Sector (bars) for Seven Countries. The correlation of stocks within sectors is mostly signif-
icantly higher than the average correlation and show higher dispersion. The remaining eight markets behave
similarly. Only China and most of the Japanese market demonstrated a different behavior. Sources: Standard

& Poor’s Compustat, Thompson Reuters Datastream, author’s analysis.

Figure A.2 illustrates the ACF of the raw and the filtered returns. For all countries
the GARCH(1,1) produces filtered returns without significant auto-correlation.

Figure A.3 sheds some light on the distributional properties of the raw and filtered
data. Not surprisingly the raw returns have very pronounced tails. After normalizing
everything with the estimated volatilities the filtered returns are rather well described
by the fitted t-distribution (middle panel). The analysis of the residuals (right panel)
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Figure A.2: Average Auto-correlation Functions for the Absolute Raw (left) and Filtered Returns (right) up
to Lag 50 for Seven Countries. Although the markets show different levels of autocorrelation and different
speed of decay, the GARCH(1,1) is able to produce de-garched time series which sufficient (insignificant)
levels of auto-correlation. The results of the other eight markets are very similar. Sources: Standard & Poor’s
Compustat, Thompson Reuters Datastream, author’s analysis.

reveals few observations in the tails that are slightly off, but these are already present in
the raw data. Given the large number of observations, these do not pose any problem.
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Figure A.3: Distributions of the Raw Returns (left panel), Filtered Returns (middle panel) and Residuals
(right panel) and Fitted t-distributions. Sub-sample of roughly 20,000 observations. The degrees of freedom
for the fitted t-distribution are given below each plot. Sources: Standard & Poor’s Compustat, Thompson
Reuters Datastream, author’s analysis.
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Appendix B. Robustness Analysis

A test for our results is to check whether the estimated dependencies differ from
the results of the standard multivariate GARCH models. Prominent versions are the
Dynamic Conditional Correlation mode (DCC) 1 Engle (2002), or the model by Baba,
Engle, Kraft and Kroner (BEKK). One limitation of these models is that it is not pos-
sible to estimate these models with the entirety of our data jointly, but it is possible to
check if the obtained correlations from a pairwise estimation are similar to the corre-
lations obtained from the filtered data (where the volatility is removed for each time
series independently).

To compare the correlations for the entire time series as well as for a rolling win-
dow, we will estimate the DCC model, which will deliver a time dependent correlation
matrix. To limit the computation time we choose a sub-sample of 77 randomly se-
lected stocks and estimate the DDC pairwise. For a detailed discussion of the model
the reader is referred to Bauwens et al. (2006) and Engle (2002). In brief, within a
multivariate GARCH model one tries to find a matrix of conditional variances denoted
H;. In the specification of the DDC model by Engle and Sheppard, it is assumed that
the correlations between the assets are time varying, such that (in the p = g = 1 case)

H, = D;R,D,, (B.1)
where
D, = diag(hy.....hyy ), (B.2)
with the /;s as defined before and
R, = diag(q)\’.. ... qyn ) Qidiag(q) ). . ... qym,)- (B.3)
where
Or=(-a-P)0+au_iu_, +B0:1, (B.4)

where « and § are parameters, Q is the unconditional variance of u, and u;; = &;;/ Vhii.

The estimated volatilities from the univarite GARCH and the DCC (the BEKK
model delivers almost identical results) are very similar and hence also the correlation
coeflicients are almost identical, at least when one averages over the entire time period.
The left and middle panel in Figure B.1 both show a scatter plot of the correlation
coefficients of the time series of raw returns versus the time series normalized by the
estimated volatility. Both correct the calculated correlation coefficient downwards by
the same amount. The right panel shows a scatter plot of the correlation coefficients of
the DCC model versus those of our univariate filtering.

These results also hold, on average, when looking at the averaged dynamic correla-
tion coefficient for the 13 time windows in our analysis. Figure B.2 shows scatter plots
of correlation coeflicients for filtered returns time series (univariate vs. DCC model)
for four of the 13 time windows. The plots show slightly greater variation than the
plots for the entire time period.
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Figure B.1: The left panel shows the correlation of raw returns vs. the correlation conditional on the volatility
estimated by the DCC model. The middle panel shows the same for the correlation vs. the correlation of the
GARCH filtered returns. The right panel compares the correlation coefficients from the simple GARCH and
DCC model. Both models correct the correlation to about 87 percent of the one that one would get from the
raw returns. Sources: Standard & Poor’s Compustat, Thompson Reuters Datastream, author’s analysis.

The results also indicate it is possible to look at correlation networks on a much
smaller time scale than in the remainder of the paper if using the dynamic correlation
coefficients from the DCC model. This would, however, require a massive computer
cluster using parallel computation.
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Figure B.2: Scatter Plots of the Correlations of the Filtered Returns versus the Average of the DCC Model
Correlation for Four Random Time Windows. Sources: Standard & Poor’s Compustat, Thompson Reuters
Datastream, author’s analysis.
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Appendix C. Relationship of Covariances and Correlation of De-garched Returns

Throughout the previous analysis, we have used the estimated volatility from the
GARCH model to normalize the returns. It can also be useful to consider the correla-
tion of this estimated volatilizes of stocks and check if these are simply proportional to
the correlation of normalized stock returns or not. Interestingly, when we average the
volatility on a country to country level there is some structure in the behavior of these
two measures. Figure C.3 presents a scatter plot of the average correlations of filtered
returns versus the average correlations of estimated volatility.
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Figure C.3: Correlation of Returns and Correlation of Volatility. We compare the averages of the correlations
of the estimated (GARCH) volatilities and the averages of the correlation of the correlation of the filtered
returns. Hence, each plotted label represents the averages of the correlation of all stocks in the first with
all the stocks in the second country. Although there is a clear positive relationship between correlation of
volatility and correlation of filtered returns, some country specific differences in the ratio of the two measures
can be observed. The ration is above average for pairs of countries that involve China, and the ration is below
average for many pairs that involve European countries. Sources: Standard & Poor’s Compustat, Thompson
Reuters Datastream, author’s analysis.

At a first glance, there seems to be a lot of noise around some imaginary positive-
sloped line, but the printed labels reveal some structure. Chinas stocks are, as discussed
above, only weakly correlated with those of the rest of the world, but the correlation of
volatility is relatively large, making most of the CHN labels appear above others in the
left part of the figure. This is also true for many distant countries, which appear on the

30



top edge of the scatter cloud in the right half. On the other end of the spectrum, we have
pairs of mainly European countries, where the ratio of volatility- to returns-correlation
is low, which appear a bit below the bulk of the scatter cloud in the right half of the
figure. Comovement cannot be synonymously analyzed by either volatility or returns
comovement. For China, it seems that financial market restrictions can limit volatility
spillovers much less than comovement in returns. For the European markets, we see
high levels of comovement in returns but relatively less volatility spillovers than for
distant countries.
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Appendix D. Dependencies on the Stock and Country Level

In Figure D.1 we show the network representation based on the estimated depen-
dencies from the weekly data, on a stock-stock interaction level. Within the densely-
connected core, most sectors of the U.S. stock market are in the middle. They connect
with sectors from European stock markets on the left, with the Asian markets at the
top, and with markets from the Americas on the bottomright. This layout is the result
of an optimization algorithm and other algorithms deliver similar qualitative results.

Figure D.1: Network Representation Based on the Estimated Dependencies from Weekly Data. The figure
shows a visualization of the network of stocks where the weighted links correspond to stock dependencies
that at least satisfy the 90 percent confidence interval. Stocks from the same country have the same color
and a legend of the color coding is at the bottom right. Stocks of most countries form a mixed cluster in
the center of the figure. Regional structures and parts of national stock markets are at the periphery of the
mixed cluster. Stocks from India, China, Japan, and South Korea are not part of the central cluster and
these countries show different levels of connectedness. While parts of the Japanese market seem to form a
bridge toward the center, the connections of Chinese stocks are weaker and less diverse. The visualization
was performed in Gephi using the Yifan Hu multilevel algorithm. Sources: Standard & Poor’s Compustat,
Thompson Reuters Datastream, author’s analysis.

In Figure D.2 we present the dynamics of the country-level dependency networks.
We present four networks that are representative for the dynamics within the total of
13 time windows. The weighted links represent an average p-value equal or smaller
than 0.25. This low threshold is necessary since the heterogeneity on the stock-to-
stock interdependency level is large. This indicates that there is a noticeable difference
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Figure D.2: Dynamics of Country Dependency Networks. We show four networks that are representative for
the dynamics within the 13 time windows. The weighted links represent an average p-value of 0.25 or better.
This low threshold is necessary since the heterogeneity on the stock-stock interdependency level is large.
This indicates a noticeable difference between a comovement analysis on the basis of market indices versus
single stocks. It also shows that a large part of this inhomogeneity is captured by the sector-wise grouping.
Sources: Standard & Poor’s Compustat, Thompson Reuters Datastream, author’s analysis.

between a comovement analysis on the basis of market indices versus single stocks.
It also shows that a large part of this inhomogeneity is captured by the sector-wise

grouping.
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