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Abstract

This paper analyzes counterparty exposures in the credit default swaps market and examines
the impact of severe credit shocks on the demand for variation margin, which are the payments
that counterparties make to offset price changes. We employ the Federal Reserve’s Comprehen-
sive Capital Analysis and Review (CCAR) shocks and estimate their impact on the value of
CDS contracts and the variation margin owed. Large and sudden demands for variation mar-
gin may exceed a firm’s ability to pay, leading some firms to delay or forego payments. These
shortfalls can become amplified through the network of exposures. Of particular importance in
cleared markets is the potential impact on the central counterparty clearing house. Although
a central node according to conventional measures of network centrality, the CCP contributes
less to contagion than do several peripheral firms that are large net sellers of CDS protection.
During a credit shock these firms can suffer large shortfalls that lead to further shortfalls for
their counterparties, amplifying the initial shock.
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1 Introduction

Credit default swaps are contracts that serve to manage credit risk. In exchange for a premium,

the buyer of a CDS receives compensation from the seller upon the occurrence of a credit event

that affects the value of the contract’s underlying reference obligation. The reference obligation

is usually a debt security issued by a corporation or sovereign government. The contract specifies

the credit events that will trigger payment from the seller to the buyer, such as failure to pay,

bankruptcy, and restructuring (IOSCO (2012)). A single name CDS provides protection on credit

events of a corporate or sovereign entity, while an index CDS provides protection against credit

events in a portfolio of single name CDS contracts.1

The financial crisis highlighted the potential risks posed by the credit default swaps market.

As the crisis unfolded, insurance companies such as American International Group, Inc. (AIG)

became liable for payments on the CDS contracts they had previously sold to banks and dealers as

protection against credit defaults. Until the crisis, these protection sellers received a steady stream

of payments from protection buyers and they rarely had to pay out claims. When the crisis hit, the

sudden calls for collateral put great pressure on the sellers, which traditionally had a thin capital

base due to their AAA-rated status. In particular, AIG had to be rescued by the U.S. Department

of the Treasury in order to meet its margin obligations on CDS contracts to dealers2, who in turn

were threatened if the payments were not forthcoming.3 This incident throws into high relief the

potential for contagion that the CDS market poses for the financial system.

In this paper we analyze this contagion potential using detailed data provided to the Office

of Financial Research (OFR) by the Depository Trust Clearing Corporation (DTCC). The data

include all CDS transactions in which at least one of the counterparties or the reference entity is

a U.S. entity. The data provide a detailed picture of counterparty exposures for a large segment

of the CDS market, including exposures between banks, dealers, hedge funds, asset managers, and

insurance companies. We are able to compute the value of the payment and premium legs of each

CDS position as a function of spread, duration, and underlying reference entity, including both

1Markit (2012) provides a description of the effect of credit events on the cash flows and composition of credit
default swap indices.

2see Figure 20.4 on p 377 of United States Financial Crisis Inquiry Commission (2011)
3The risk of nonpayment was exacerbated by the unwillingness of some dealers to face AIG, evidenced through

their refusal of novation requests (Burrough (2008)). A novation is the transfer of a party’s exposure from one
counterparty to another.
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single-name and reference indices, under a shock to the reference entities. We focus in particular

on the change in value of each contract, and the resulting variation margin (VM) payment owed

to each counterparty, under of the Federal Reserve’s 2015 Comprehensive Capital Analysis and

Review (CCAR) shock.4 This shock was designed to test the robustness of the financial system

under a large and sudden change in asset values. In the present context the shock implies a sudden

decrease in the value of corporate and sovereign debt, which results in large demands for VM in

the CDS market. Of particular interest is the VM owed by (and to) the 26 members of the CDS

clearing house ICE Clear Credit, the principal central counterparty clearing house (CCP) in this

market. These include many of the large US banks and broker-dealers as well as a number of foreign

entities.5

VM payments must be made within a very short time frame – typically just a few hours. If

the VM owed by a given firm exceeds the amount it is owed, the firm may experience short-term

stress. This stress can be relieved by drawing on cash and cash equivalents held by the parent

institution, but if the stress is large, those sources may prove to be inadequate. In that case, the

firm may default on its obligations, which exacerbates the stress for its counterparties and could

lead to system-wide contagion. We develop a general model that allows us to estimate the extent

to which these network exposures amplify the initial stress.

The model also allows us to estimate the extent to which each individual firm contributes to

stress amplification. It turns out that conventional notions of centrality do not capture the extent

to which different firms contribute to contagion, a point emphasized by Glasserman and Young

(2015; 2016). In particular, although the CCP is central according to various measures, such as

eigenvector centrality, it contributes significantly less to contagion than do several of its members

and nonmember firms. One might have thought that, since the CCP faces many firms, its role

in contagion would be larger than either CCP members (dealers) or nonmembers (such as hedge

funds and asset managers) that have positions with many fewer participants. The reason that

some member and nonmember firms contribute more than the CCP to contagion is that they are

4Variation margin is the payment that a derivative counterparty makes to (or receives from) another in the event of
loss (or gain) of the position. In the CDS market, variation margin is generally exchanged on a daily mark-to-market
basis.

5The CME Group (CME) also acts as a CCP for some CDS contracts based on indices but it does not report
its positions to the DTCC. This gap in the data does not pose a particular problem for our study because the CME
represents a much smaller proportion of the CDS market than does ICE. As of March 2016, the CME cleared $1.4
trillion in gross notional whereas ICE cleared $52 trillion.
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large net sellers of CDS protection, and under a credit shock they owe much more VM than they

are owed. A shortfall in payments by these firms can cascade into the network of broker-dealers,

causing some of them to suffer payment shortfalls. Under some scenarios, the contagion could bring

down the CCP.

2 Related Literature

The financial crisis of 2007-09 has sparked a rapidly growing literature, both theoretical and

empirical, on financial networks and systemic risk. Some of this work focuses specifically on the

network structure of CDS markets. In particular, the network of CDS positions in the European

market has been studied in detail by Brunnermeier et al. (2013), Peltonen et al. (2014), Vuillemey

and Peltonen (2015), and Clerc et al. (2013). Their work differs from the present paper in the

methodologies used to study contagion, and in the focus on the European rather than the U.S.

market. More recently, Ali et al. (2016) examine the network structure of the CDS market in the

United Kingdom. These authors argue, as we do here, that the systemic importance of market

participants is not fully captured by conventional measures of centrality; the size and structure of

financial firms’ balance sheets is crucial to understanding how much risk they pose to the system

as a whole.

There has been less research on the CDS market in the United States, mainly due to limited

data access. To get around this difficulty, Markose et al. (2012) attempt to reconstruct CDS

bilateral positions and systemically important institutions using publicly reported balance sheet

data. Markose (2012) and the BIS Macroeconomic Assessment Group on Derivatives (2013) employ

similar techniques to reconstruct exposures in the derivatives market more generally. Our paper

differs in that we are able to map the network of CDS exposures in the United States using

detailed DTCC data as of a specific date (October 3, 2014). We do not look merely at notional

exposures between participants as in the work mentioned above. Instead, we impose a specific shock

constructed for the purpose of stress testing (the 2015 CCAR shock) and compute the resulting

variation margin payment obligations between participants. We then analyze how much stress these

demands create as they propagate through the network.6

6A recent paper of Cetina et al. (2016) also uses DTCC data to study the effects of a CCAR shock, but it focuses
on the direct impact of the shock on particular firms rather than on network spillover effects. Other papers have
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more broadly consider the systemic risk of large market participants on pricing and liquidity (Siriwardane (2015a),
Shachar (2012)) and the potential pathways that CDS have in transmission risk (Gordy (2012)).

Our results fit into a broader literature that relates network structure to the risk of contagion.

A central theme of this literature is the extent to which interconnectedness increases or decreases

systemic risk. Network connections can have a positive effect by diversifying the risk exposures

of individual market participants, but they can also have a negative effect by creating channels

through which shocks can spread. The tension between these two forces has been explored in a

variety of papers: see among others Allen and Gale (2000); Freixas et al. (2000); Gai and Kapadia

(2010); Gai et al. (2011); Haldane and May (2011); Blume et al. (2011); Cont et al. (2013); Elliott

et al. (2014); Acemoglu et al. (2015). For general surveys of the literature see Bisias et al. (2012)

and Glasserman and Young (2016).

Here we demonstrate, following Glasserman and Young (2015), that abstract measures of net-

work structure, such as degree distribution and eigenvector centrality, are insufficient to identify

the systemically important actors. Firm characteristics, choices, and behavior interact with the

network structure of exposures to produce contagion. We illustrate this point concretely in the

CDS market by showing that the most important contributors to contagion under stress are not

the CCP or its members, but certain firms that are peripheral to the network but are very large

and have highly unbalanced CDS positions. Under severe stress in the credit markets, the mis-

match between incoming and outgoing payment demands at these firms may trigger contagion in

the system as a whole, which can put severe stress on the CCP.

3 VM Payment Obligations Induced by the 2015 CCAR Shock

The main source of data for this study was provided to the OFR by DTCC at a weekly frequency.

It provides both transactions and positions on all standardized and confirmed CDS involving U.S.

entities since 2010. Positions represent the accumulation of all past transactions that contribute

to a swap between counterparties. They include detailed information on the underlying reference

entities, the notional amount bought and sold, the inception and termination dates, and other

terms of the contract. We also use data from Markit to estimate single-name credit spreads for all

reference entities in the positions we observe.

The Federal Reserve’s 2015 CCAR shock prescribes a sudden widening of credit spreads for
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corporate, state, municipal, and sovereign debt according to their rating class (see Table 1). This

widening changes the value of the premium and payment legs of the CDS contracts that reference

these entities and these changes induce variation margin (VM) payment obligations between the

counterparties. The methodology for estimating the VM payments is described in the Appendix;

here we provide an overview of the results.

Table 1: The Impact of 2015 CCAR Severely Adverse Market Shocks on Credit Default Swaps

Corporate Credit

Advanced Economies

AAA AA A BBB BB B <B or Not Rated

Spread Widening (%) 130.0 133.0 110.2 201.7 269.0 265.1 265.1

Emerging Markets

AAA AA A BBB BB B <B or Not Rated

Spread Widening (%) 191.6 217.2 242.8 277.5 401.9 436.4 465.8

State & Municipal Credit

AAA AA A BBB BB B <B or Not Rated

Spread Widening (bps) 12 17 37 158 236 315 393

Sovereign & Supra Credit

See FRB worksheet: CCAR-2015-Severely-Adverse-Market-Shocks-data.xlsx

Source: Federal Reserve Board (FRB (2016))

Figure 1 shows the network of payment obligations between the CCP and its 26 members.

It does not include indirect exposures between the CCP and nonmember clients, which will be

considered below. The arrows show the direction of payment, and the width of the arrows indicate

the relative size of the payments. The absolute amount of these payments are summarized in Table

2, where we have aggregated the members into groups of five or six to maintain anonymity. For

example, the group A-E owes $2.92 billion in VM and is owed $1.29 billion. The difference ($1.63

billion) must be covered by liquid assets held in the firms’ treasuries or else they will default on their

payments and the underlying contracts will be closed out.7 The difference between the amount of

VM that a firm owes and the amount that it is owed (if the difference is positive) is the initial

7Note that the VM owed by the CCP is the same as the VM owed to it; this is a consequence of the CCP’s
matched book. These amounts cannot be netted out, because they arise from contracts with different counterparties.
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stress induced by the shock.

Figure 1: Variation Margin Payment Network after 2015 CCAR Shock

Note: The network diagram plots the central counterparty clearing house (CCP) (in green) and
its members labeled A thru Z (in blue). The width of the arrows indicates the relative size of the
net VM payment owed bilaterally between the counterparties.
Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

Thus far we have considered only payments between the CCP and its members, and between

the members themselves. In addition, there are many nonmember firms that have positions directly

with members, as well as positions with the CCP that are guaranteed by members. There are over

900 such firms, including a wide variety of hedge funds, asset managers, and insurance companies.

Figure 2 provides an overview of how a sample of these nonmembers are connected to the core

members and the CCP. The key features of this network are : (1) nonmembers tend to owe members

rather than each other; (2) there is a high degree of heterogeneity among the nonmembers in terms

of VM owed; (3) some nonmembers experience substantially greater initial stress than any of the
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Table 2: Variation Margin Payments and Initial Stress for CCP Member Firms (millions of dollars)

Firms
Variation

Margin Owed By
Variation

Margin Owed To
Initial
Stress

A-E 2,917 1,287 1,630
F-J 35 46 8

K-O 439 571 27
P-T 5,135 4,399 1131
U-Z 7,614 8,449 532

CCP 8,602 8,602 -

Note: Initial stress is the difference between the VM a firm owes and the amount that it is owed,
provided the difference is positive; otherwise the stress is zero. Firms are arranged in groups of
five or six to maintain anonymity. Within each group some firms are under stress, hence the total
stress for each group is positive.
Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

members. The latter point is highlighted in Table 3, which provides a summary of the incoming

and outgoing VM balances for the top 26 nonmember firms, ordered by the size of the initial stress.

(The results are aggregated in groups of five in order to preserve anonymity.)

Table 3: Top 26 Nonmember Firms Ordered by Initial Stress (millions of dollars)

Firms
Variation Variation Initial

Margin Owed By Margin Owed To Stress

I-V 10,296 830 9,466
VI-X 2,707 1,771 936

XI-XV 457 77 380
XVI-XX 1,254 967 287

XXI-XXVI 395 92 303

Note: Each row gives the variation margin owed by and to a given set of firms, which are ordered
by size of initial stress. Firms are arranged in groups of five or six to maintain anonymity.
Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

Our premise is that higher levels of stress increase the likelihood that a firm does not make its

VM payments in a timely way, or pays with illiquid assets whose values are not fully discounted,

or does not pay at all. These payment deficiencies increase the stress on the firms’ downstream

counterparties, possibly leading them to reduce their payments too. The upshot is network con-

tagion. In the following sections we propose a mathematical model that allows us to estimate the
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Figure 2: Variation Margin Payment Network after 2015 CCAR Shock for CCP Members and a
Subsample of Nonmember firms

Note: The network diagram plots the central counterparty clearing house (CCP) (in green), CCP
members labeled A thru Z (in blue), and a sample of CCP nonmembers (in black). The width of
each arrow indicates the relative size of the net VM payment owed bilaterally between
counterparties.
Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

system-wide deficiency in payments that results from network contagion under different parametric

assumptions about the firms’ responses under stress. The model also allows an assessment of the

extent to which individual firms contribute to contagion. A key finding is that some nonmember

firms contribute much more to contagion than do any of the member firms or the CCP itself.

4 Initial Margins

To conduct our analysis we need to specify the initial margins collected by the counterparties

in CDS transactions. The role of initial margin (IM) is to cover deficiencies in VM payments by
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one’s counterparty, including the cost of closing out the position in case of default. Initial margins

collected from counterparties are held in segregated accounts and can only be used to cover losses

induced by the counterparty’s failure to pay. A portion of the IM is typically held in cash or cash

equivalents, and the remainder is held in assets that can be liquidated on short notice but not

necessarily at full value. The proportions held in cash and other assets are largely at the discretion

of the collecting firm and thus affect its ability to cover deficiencies in incoming payments. In the

remainder of the paper, we shall assume that IM is held entirely in cash equivalents, but it should

be noted that this assumption may underestimate the potential for contagion.

It must be emphasized that the IM collected by a firm is separate from the liquidity buffer

that it maintains to meet its own VM obligations. IM can only cover shortfalls in the incoming

payments due from counterparties. The liquidity buffers of most CDS market participants are not

publicly reported, and even if they were, the buffers can be tapped by other (non-CDS) activities

within the firm that will probably be under stress at the same time.8 For this reason we shall not

attempt to estimate the size of the buffers at different firms. Instead, we shall treat the ability

of a firm to meet short-term payment demands as a parameter and explore the behavior of the

system under different parametric settings. We shall consider two regimes regarding the payment

of initial margin (IM). Up until September 2016, some types of bilateral CDS transactions did

not require the posting of IM . In particular, dealers were not required to post IM with any other

firms (except for the CCP), and commercial banks were required to post IM with other dealers

but not with anyone else (except for the CCP). Other firms, such as asset managers and hedge

funds, did not need to post IM in bilateral transactions with each other, but they did post IM in

transactions with dealers, commercial banks, and the CCP (see Table 4).

Beginning in September 2016, all counterparties to CDS transactions must post IM according

to criteria established by the Basel Committee on Banking Supervision and Board of the Interna-

tional Organization of Securities Commissions (2015). The objective of the new policy is to create

incentives for firms to clear CDS trades with a CCP rather than bilaterally.9 In the context of

this study, the effect is to increase the amount of IM in the system and to reduce the potential

8An exception is the CCP, which does report the size of the buffer that it can draw upon when the IM is depleted.
This buffer consists mainly of the guarantee fund, which contained assets worth $1.6 billion at the time of the study
(ICE (2016a)).

9As shown by Ghamami and Glasserman (2016), however, the policy may not provide a sufficient incentive to
clear trades through the CCP instead of bilaterally.
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Table 4: Initial Margin Payment Matrix

Participant:
Receiver

CCP Dealer Commercial Bank HF/Asset Manager Other

CCP No No No No No
Dealer Yes No No No No

P
a
y
e
r

Commercial Bank Yes Yes No No No
HF/Asset Manager Yes Yes Yes No No

Other Yes Yes Yes No No

Source: Authors’ creation.

vulnerability of the system to contagion. In Section 6.3, we shall quantify this effect by comparing

the propagation of losses under the two regimes.

To determine the amount of IM posted (where IM is required) we adopt a conventional

portfolio-at-risk measure, namely a 99.5 percent VaR with a 10-day margin period of risk (BCBS

and IOSCO (2015)). Specifically, we compute the change in value of a given portfolio over every

10-day window in the preceding 1,000 trading days, and the level of IM is set so that 99.5 per-

cent of these changes are less than this amount. In contrast, this CCP (ICE Clear Credit) uses a

10-day standard that is augmented by various upward adjustments (the details of which are not

published). In this case, we estimate the IM that would be required to meet a 10-day 99.5 percent

VaR bilaterally for each counterparty, and scale up the estimates by a common factor so that the

total IM collected corresponds to the CCP’s total reported IM at the end of 2014 (ICE (2016a)).

5 Contagion Model

As shown in the preceding section a substantial shock such as CCAR leads to a situation where

some firms owe substantially more VM than they expect to receive. These VM obligations are

supposed to be satisfied within a very short time – typically within a few hours – and can put

severe stress on the firms’ trading desk. To relieve the stress, a firm may delay payments, post

payments with collateral that is not fully marked-to-market, or default completely. Any of these

responses will increase the stress on the firm’s downstream counterparties, amplifying the impact

of the shock through the network of CDS exposures. In the next two sections, we describe a general

way of modeling this type of contagion, and then show how it plays out for the 2015 CCAR trading
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shock.

The set-up is based on the framework of Glasserman and Young (2015), which in turn builds

on the model of Eisenberg and Noe (2001). Given a shock x, we can represent the VM payment

¯obligations by a matrix P (x) = (p̄ij(x)), where p̄ij(x) is the net amount of VM owed by node i

to node j in the aftermath of the shock. Note both p̄ij(x) and p̄ji(x) are positive. Hereafter, we∑
shall omit the dependence of p̄ij on x. Let p̄i = j=i p̄ij be the total payment obligations of i to

all other nodes. We shall restrict attention to the nodes i such that p̄i > 0. The others do not

transmit payment shortfalls; instead they act as shock absorbers. In the present context these firms

are buyers of protection (not sellers) and under a shock they will have no VM obligations.

The relative liability of node i to node j is

6

aij = p̄ij/p̄i. (1)

Note that for each i, j=i aij ≤ 1; moreover j=i aij < 1 if node i owes payments to one

or more absorbing nodes (which are not indexed). It follows that the matrix A = (aij) is row

substochastic.

Consider a node i, other than the CCP, and let cIMki denote the amount of initial margin it

collects from counterparty k. The purpose of the IM is to cover the deficiency in VM payments.

In particular if counterparty k fails to pay VM to i in a timely manner, the position will be

closed out and the IM will be applied to any losses that are incurred between the time of the

counterparty’s default and the time it takes to close out the position.

Given a shock, let pki ≤ p̄ki denote the actual payment made by k to i. If pki < p̄ki the

difference will be made up out of the initial margin sitting in k’s account at firm i provided that

p̄ IM IM IM
ki − pki ≤ cki . If p̄ik − pki > c −ki , however, then the difference p̄ik (pki + cki ) must be borne

by i. We define the stress at i, si, to be the amount by which i’s payment obligations exceed the

incoming payments from i’s counterparties buttressed by the initial margins, that is,

∑
6

∑
6

si =
∑
k=i

p̄ik −
∑
k=i

(
(pki + cIMki ) ∧ p̄ki

)
.10

6 6
(2)

10In general, x ∧ y denotes the minimum of two real numbers x and y.
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Note that when all of i’s counterparties pay in full, that is pki = p̄ki for all k, then there is no

stress at i (si = 0).

Different firms will react to stress in ways that depend on such factors as their liquidity buffers,

non-CDS positions, and general risk management policies. We do not have enough information to

model these factors explicitly. Instead, we shall adopt a reduced-form approach in which we posit

a response function for each firm i that maps the amount of stress, si, to an expected deficiency in

payments

di = p̄i − pi = fi(si). (3)

We shall assume that fi() is monotonic increasing in si, that is, the greater the stress the greater

the expected deficiency in payments. For analytical convenience we shall assume that fi() is linear:

di = p̄i − pi = τisi ∧ p̄i, τi ≥ 0. (4)

The scalar τi is i’s transmission factor. When τi is small the firm is able to absorb most of

the stress, say by drawing on its own cash reserves. The larger the value of τi, the more the stress

is passed on to i’s counterparties in the form of reduced payments. When τi = 1, the difference

between i’s VM obligations and incoming payments (buffered by IM) is transmitted in full to i’s

counterparties: in expectation, i absorbs none of the difference and passes it along to its downstream

counterparties in the form of reduced payments. It is entirely possible that τi > 1 which models

the situation in which uncertainty about incoming payments leads i to hold back on some of its

obligations as a precautionary measure.

Assuming that expected payment reductions are transmitted to i’s counterparties in proportion

to the size of its obligations, the payment from i to j can be expressed as

pij = [p̄ij − τiaijsi]+ . (5)

The transmission of stress by the CCP must be modeled somewhat differently due to the

presence of the guarantee fund. This is a common pool of reserves that is funded by the various

members and is available to cover residual losses when the initial margins are depleted. Let the
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CCP node have index 0, and let cIMk0 be the initial margin collected by the CCP from each member

k = 0. Let γ 11
0 be the total amount in the CCP’s guarantee fund. Then the difference between

the CCP’s VM obligations and the resources it has to meet them is

6

s0 =

∑
k=0

p̄0k −
∑
k=0

(
(pk0 + cIMk0 ) ∧ p̄k0

)
− γ0


+

,
6 6

(6)

where k ranges over the members. Given the CCP’s transmission factor τ0, the actual payment

from the CCP to each counterparty j is

p0j = [p̄0j − τ0a0js0]+ . (7)

Given any vector p ∈ R2n+2 such that 0 ≤ pij ≤ p̄ij for all 0 ≤ i, j ≤ n, let Φ(p) be the mapping

defined by expressions 2 - 7, that is,

∀i = 0, Φ(p)ij = p̄ij − τiaij∑
k=i

p̄ik −
∑
k=i

(
(pki + cIMki ) ∧ p̄ki

)
+

,6

 
6 6


(8)

Φ(p)0j = p̄0j − τ0a0j ∑
k=0

p̄0k −
∑
k=0

(
(pk0 + cIMk0 ) ∧ p̄k0

)
− γ0

+


+

.

 
6 6

 
(9)

Φ is monotone non-decreasing, continuous, and bounded so by Tarski’s Theorem it has at

least one fixed point (Tarski et al. (1955)). In the empirical applications we specify values for the

parameters τ0, τ1..., τn, and then recursivelty compute a fixed point of this system by taking the

limit of the sequence p1 = Φ(p̄), p2 = Φ(p1), ....

Such a fixed point can be interpreted as a consistent set of expectations about the incoming

payments for each participant, given the behavior of all the participants in response to stress.

This has the flavor of a rational expectations model in which the firms’ responses are correctly

conditioned given the responses of everyone else. Here however we do not attempt to rationalize

specific values of the parameters τi; rather we treat them as given and study the behavior of the

system under a range of possible values.

11If the guarantee fund is used up, a CCP may call on further resources, including members’ capital contributions
and special assessments, although it is unclear how much of these can be accessed on very short notice. These
resources can be viewed as an addition to γ0 but we do not model them explicitly. For a detailed description of ICE
Clear Credit’s waterfall structure see ICE (2016b).
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6 Empirical Results on Contagion

We now apply this framework to evaluate the potential amount of contagion in the CDS market

that would be produced by a shock such as CCAR. The total impact of the shock is the total

deficiency in VM payments it generates summed over all directed edges in the network. In our

notation the total deficiency can be expressed as follows

D = D(τ0, ..., τn; p̄) =
∑
i

where di defined in (4). For simplicity let us assume that τi = τ2 = ... = τn = τ for some scalar

τ ≥ 0 and τ0 = 1 for the CCP. For each τ -value in the range [0, 1.5] we compute the payment

deficiency D = D(τ); the results are shown in Figure 3.

di, (10)

Figure 3: Contagion Model Results for CCAR 2015 Shock

Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

A deficiency in payment from a given counterparty i to another counterparty j leads j to tap the

IM (if any) that it collected from i to deal with such contingencies. The IM -adjusted deficiency

˜in i’s payment to j is [p̄ij − (pij + cIMij )]+ = dij , that is the shortfall after the IM posted by i∑˜ ¯and collected by j has been used up. The total IM -adjusted deficiency is D = 0≤i,j≤n dij . Note

˜ ˜that both D and D depend on the parameter τ . Figure 3 plots D(τ) and D(τ) on the domain

0 ≤ τ ≤ ˜1.5. For each value of τ the difference D(τ)−D(τ) is the total amount of IM used to offset

14



˜payment deficiencies by counterparties, and D(τ) is the remaining loss that is neither absorbed by

liquidity buffers nor by IM . The larger the transmission factor the greater the amount of contagion

in the system. When τ is sufficiently large (in fact when τ > 0.95), the guarantee fund at the CCP

would be used up, and it would need to call on its members for additional funding. It must be

emphasized that any IM that is used to cover payment deficiencies represents a loss to the firm

that posted the IM , and it would have to be replaced if the contracts are renewed.

6.1 Initial versus Equilibrium Stress

To gain further insight into the contagion process, let us fix τ = 1 for purposes of illustration.

This corresponds to the situation where, at each node i, the difference between outgoing VM

obligations and incoming payments (topped up by collected IM , if needed) is passed on by reducing

i’s payments to its counterparties. As noted earlier, the reduction could stem from payment delays

or the posting of illiquid collateral. It can also be viewed as the expected reduction in payments

that result from i completely defaulting with probability si/p̄i, and paying in full with probability

1− (si/p̄i).
12

To illustrate, suppose that i has outgoing VM obligations of $2 billion and incoming payment

obligations of $1 billion.13 The difference is the “initial stress” at i. If τi = 1 it will pass on the

difference to its counterparties, reducing its payments pro rata by 50 percent. Due to network

contagion, however, the stress at i can be considerably larger than this initial estimate. The reason

is that the incoming payments of $1 billion may not be forthcoming due to stress at i’s upstream

counterparties. For example, in equilibrium there might be only $500 million in incoming payments,

in which case the actual stress would be $1.5 billion (which is passed along to i’s counterparties).

In fact, the equilibrium stress for a firm can be large even though the initial stress is zero. The

difference between initial stress and equilibrium stress is shown in Table 5 under the assumption

that all τi = 1.

12More generally, if i defaults with probability qi and pays in full with probability 1 − qi, then the expected loss
transmitted to i’s counterparties is qip̄i, and the associated transmission factor is τi = qip̄i/si

13These numbers are not exaggerated: there are some nonmembers where the initial stress is even greater than $1
billion.
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Table 5: Stress Equilibrium when all τi = 1

Initial Stress Equilibrium Stress

CCP - 1,331

Members
A-E 1,630 3,236
F-J 8 45

K-O 27 3,703
P-T 1131 6,978
U-Z 532 7,993

Nonmembers
I-V 9,466 12,869

VI-X 936 1,195
XI-XV 380 484

XVI-XX 287 564
XXI-XXVI 303 364

Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

6.2 Contribution to Contagion by Individual Firms

How much does a given firm contribute to contagion? The answer depends on: i) the amount

of stress (payment imbalances) at that firm; ii) the firm’s τ -value, which measures how much of the

payment imbalances it passes on to its counterparties; iii) the structure of the network of exposures.

We can estimate the firm’s marginal contribution to contagion by considering the reduction in total

payment deficiencies D when we set the firm’s τ -value equal to zero. In other words, for a given

firm i and a given vector of values (τ0, ..., τn) = τ , consider the difference

∆i(τ ) = D(τ )−D(τ
′
). (11)

′ ′ ′
where τj = τj for all j = i and τi = 0. The τ -scenario amounts to assuming that i can absorb any

amount of stress by drawing on its treasury, hence it contributes nothing to network contagion.

Figure 4 shows the distribution of values ∆i(τ ) when initially all τi = 1.

Note that there are several members (and one nonmember) that contribute over seven times as

much to network contagion as does the CCP.

6
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Figure 4: Distribution of Firms’ Marginal Contributions to Contagion

Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

6.3 Comparison of Pre- and Post-2016 IM Regimes

The preceding analysis was conducted for the 2015 CCAR shock scenario and we assumed that

IM was collected under the prevailing regime at the time of the shock (see Table 4). Starting

in September 2016, IM must be posted by both counterparties in all non-centrally cleared CDS

transactions using a 10-day margin period of risk (BCBS and IOSCO (2015)). Although this new

regime is to be phased in and will undoubtedly change the network of exposures, we shall examine

what would have happened if the new requirements had been in place when the CCAR shock was

applied to the network of exposures as it existed at the time.

The results are shown in Figure 5. A comparison with Figure 3 shows that there is a sizable

reduction in the payment shortfalls throughout the system; moreover for values of τ ≤ 1 almost all

of the shortfalls are covered by collected IM , thus reducing the amount of contagion.

Figure 6 shows the distribution of firms according to their marginal contributions to contagion

when all τi = 1. A comparison with Figure 4 shows that the distribution is shifted to the left:

under the new regime there are only three firms that contribute more than $4 billion, whereas in

the previous regime there were 10. Nevertheless there is still one nonmember firm whose marginal

contribution is very large ($8 billion), which represents about 40 percent of total systemic losses.
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Figure 5: Policy Change Impact under CCAR 2015 Shock

Note: When τ > 1.25, the central counterparty (CCP) is under severe stress and must call on its
members for additional funding.
Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

Although this firm is required to collect IM from its counterparties under the new regime, this does

not offer much additional protection against losses transmitted by this firm to its counterparties,

which are mainly members and the CCP that already collected IM under the previous regime.

These results highlight the importance of requiring firms to hold strong liquidity buffers in addition

to collecting adequate IM from their counterparties.
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Figure 6: Policy Change Impact on Firms’ Marginal Contributions to Contagion

Source: Authors’ calculations using data provided by Depository Trust & Clearing Corporation
and Markit.

7 Conclusion

In this paper, we have analyized the network of counterparty exposures in the CDS market.

In contrast to much of the prior work on banking networks, the DTCC data provide a detailed

picture of network exposures at different points in time. We are therefore able to track the potential

effects of a shock, such as the CCAR shock specified by the Federal Reserve, as of a particular date.

We estimate the impact of the shock on the value of both single-name and index positions, and

by implication the variation margin (VM) owed between the contracting parties. A significant

feature of this market is that demands for VM must be met over very short time horizons. When

the demands for VM from a given firm exceed its initial margin and other ready sources of cash,

the firm may fail to pay its counterparties promptly, and this shortfall can become amplified as it

cascades through the network.

We examined the potential contribution to network contagion of the 26 members of the major

CCP in this market (ICE Clear Credit), and also the potential contribution of the major nonmem-

bers. We found that network exposures can significantly increase the amount of contagion when

the transmission factor τ is greater than one. Furthermore there are many members (and some
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nonmembers) that contribute substantially more to contagion than does the CCP, in spite of the

fact that they are peripheral in the network. Under the new policy in which all counterparties to

bilateral CDS transactions must post IM , the total amount of contagion is substantially reduced,

and so are the marginal contributions of individual firms. Nevertheless, the CCP still contributes

substantially less to contagion than do some members (and some nonmembers). This finding con-

trasts with the prevailing view that CCP’s constitute a major source of systemic risk. Our analysis

suggests that more attention should be paid to firms that are very large and have highly unbalanced

CDS positions, whose failure can trigger large systemic losses even when the CCP does not fail.

It also highlights the key role of liquidity buffers in coping with large and sudden demands for

variation margin that result from a credit shock.

Our study is limited to the analysis of a specific part of the derivatives market, and does not

encompass the full range of shocks to which firms may be exposed. In particular, we have not

included exposures to interest rate swaps, which form a substantially larger market (in notional

terms) than the CDS market, but which is not part of our dataset. In this sense our analysis is

somewhat conservative. Under a CCAR shock, firms may be subjected to simultaneous payment

demands over multiple lines of business, increasing the stress on their resources. In spite of these

limitations, the framework we propose is general and can be applied to many different settings

where stresses are transmitted through the network of exposures.
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Appendix – Evaluating CDS Portfolios

In this section we describe the methodology for estimating the mark-to-market value of each

counterparty’s exposures at a given date for both single-name and index positions. We describe

the bootstrap procedure to generate a schedule of hazard rates consistent with the market for

all traded credit curves. We then describe the process of index disaggregation to single-name

equivalents. Finally, we describe how we arrive at expressions for variation margin payments under

stress.

Bootstrapping Credit Curves

We calibrate hazard rate schedules for all credit curves references by contracts we observe. At

a minimum, this achieves consistency with market quotes on contracts with standard maturities.

Further, this permits consistent valuation of contracts within our sample.

The CDS market quotes credit spreads for bearing risk through a range of standard terms:

1-year, 3-year, 5-year, 7-year, and 10-year, and sometimes longer maturities. Each additional term

generates a hazard rate over a corresponding increment: the 3-year term generates a 1-3y increment,

the 5-year term generates a 3-5y increment, and so on through 10 years. The bootstrapping

technique we employ here generates a piecewise constant schedule of hazard rates. A CDS contract

struck at inception at the market spread for a standard maturity, and valued using the schedule

of hazard rates through that maturity, will have equal default and premium legs. Bootstrapping

permits us to value any position whose remaining maturity at the time of stress may not correspond

to market-quoted maturities.

Both CDS payment and premium legs are implicit functions of a hazard rate, λ, which enters the( ∫ u )
expression for the survival probability S(0, t, λ) through its definition as exp − λds . Z(0, ti) ist

the risk-free discount factor through period i, which we compute from LIBOR rates from 1 through

6 months and swap rates from 9 months through 30 years. We assume CDS premia are paid on

International Money Market (IMM) payment dates, consistent with market convention. Finally,

we allow for the possibility CDS pay accrued premia on default to the protection seller, ie. that

when a default occurs inter-period, CDS premia to the protection seller are pro-rated to the time

of default. We assume α = 0.5 (i.e., that any default occurs at the inter-period halfway point). In

subsequent notation, ∆n,n+1 is the daycount fraction for the time interval (tn, tn+1). We use the

ACT/365 convention standard in the CDS market.

We write the CDS payment and premium legs through maturity T :
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V 0→T
prem (λ, sT ) = sT

N∑
i=1

Z(0, ti)∆i ((1− α)S(0, ti) + αS(0, ti−1)) . (12)

In any period, the payment leg derives value from the incremental default probability over that

time. Given the relationship between default and survival, S(t, u, λ) = 1− P (t, u, λ), we can write

the payment leg as follows:

V 0→T
pay (λ) = (1−R)

N∑
i=1

Z(0, ti) (P (0, ti)− P (0, ti−1)) . (13)

λ∗ is the solution that sets the CDS payment and premia legs to fair value (equality) at inception,

ie. where V 0→T
contract(λ

∗, sT ) = V 0→T
pay (λ)− V 0→T

prem (λ, sT ) = 0.

The credit curve bootstrapping process establishes consistent hazard rates for all quoted contract

maturities. In other words, for Ti+k ≥ Ti, the bootstrap process establishes a vector of hazard rates

λ∗ 0→T
such that V i+k

contract (λ
∗ T →T
, s 0

k
) = V →Ti

T contract(
∗

i+
λ0,T , sTi

) + V i i+k

contract (λ∗T ,T , sTi+k
) ∀ k.

i i i+k

We use the methodology from Luo (2005) to express the subsequent stage of the bootstrap{
technique. For any reference entity, we have a term structure of fair-value spreads T1 : sT1

, T2 : sT2
,} { }

... Tk : s ∗ ∗ ∗
Tk

. The bootstrap technique generates hazard rates λ0,T , λ1 T1,T
, ... λ

2 Tk−1,T
that

k

establish fair value for market standard maturities. Upon having computed the hazard rate from

0 (inception) through T1, the second stage is to compute λ∗T1,T
, given λ∗

2 0,T . More generally, any{ 1 }
subsequent stage computes λ∗Tk−1,T

, given λ∗ ∗ ∗ ∗
k 0,T , λ ,

k−
= λ λ

1 0,T T1,T
...

1 2 Tk−2,Tk−
. These optimal

1

values are related through the decomposition of the survival probability at any time t such that

Tk ≤ t ≤ Tm:

P (0, t,λ0,Tm
) = P (0, Tk, λ0,Tk

)P (Tk, t, λTk,Tm
). (14)

For brevity, we will refer to P (0, tl,λ0,Tl
) from here on as P (tl). We make a simplifying assumption

relative to Luo (2005) that is consistent with Markit quotes: standard maturity dates fall upon

IMM payment dates. Given this, let Nk be the payment period index that corresponds to a contract

maturity of Tk. The conditional premia and payment legs are given as follows:

V 0→Tm
prem (λTk,Tm

, sTm
; λ∗

0,Tk
) = sTm

{
C(λ∗

0,Tk
) +D(λTk,Tm

)

−
Nm∑

i=Nk+1

Z(0, ti)∆i

(
P (ti)− P (tNk

)− αP (ti)− P (ti−1)

2

)} (15)
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where

C(λ∗
0,Tk

) =

(k−1,k)∑
(f,g)=(0,1)

Ng∑
i=Nf

Z(0, ti)∆i (1− P (ti)) + α
(P (ti)− P (ti−1))

2
,

D(λTk,Tm
) =

Nm∑
i=Nk

Z(0, ti)∆i(1− P (tNk
)).

V 0→Tm
pay (λTk,Tm

; λ∗
0,Tk

) =A(λ∗
0,Tk

) +

Nm∑
i=Nk+1

(1−R)Z(0, ti)

(
P (ti)− P (ti−1)

)

where

A(λ∗
0,Tk

) =

(k−1,k)∑
(f,g)=(0,1)

Ng∑
i=Nf

(1−R)Z(0, ti) (P (ti)− P (ti−1)) .

[ ]

(16)

P (ti), and P (ti−1) in Equations 15 and 16 are functions of λTk,Tm
, where λ∗T ,T is the solution

k m

that sets the contract of maturity Tm to fair value, given hazard rate(s) observed over (0, Tk), such

that V 0→Tm

contract(λTk,Tm
, sTm

; λ∗
0,T ) = 0.

k

Once a credit curve is bootstrapped, we can value a contract of any maturity simply by identi-

fying its last payment date index, computed hazard rate schedule, and market spread.

Portfolios of Single Name Equivalents

We disaggregated Markit credit indices to single-name constituents. For each position referenc-

ing a Markit credit index, we decompose the index using Markit RED data. This source provides

the composition of the index at any point in time, taking into account index revisions and defaults.

We employ the disaggregation technique described by Siriwardane (2015b) in Section 2.

Each Markit credit index is described by its series and version. A series may have one or more

Dversions. An index series factor, fi is defined for every version i as fi = 1 − i−1 , where Di−1 isN

the number of defaults for an index series version i in 1, 2, 3 .... D0 = 0, so f1 = 1. The weight of a

constituent within a version must be computed as of a valuation date of interest and is a function

of the index composition as of the date the position was established (trade date). In general, the

index composition at the trade date may not be its composition at inception. The current weight

wi(u) for index version i of a constituent u whose inception index series weight is w0(u) is given as
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wi(u) =
w0(u)

fi
. (17)

As an example, an index with 43 original constituents at inception would have a per-constituent
1

weight of w1(u) = 43 = 0.0233. Version 2 of the index would have a per-constituent weight of1
1

w (u) = 43
2 = 0.0244. The per-constituent weight is scaled by the notional value of the index0.953

position to arrive at the effective single-name notional equivalent. We perform all calculations in

this paper on a firm’s single-name equivalent notional CDS positions.

Estimating Variation Margin

Estimating the variation margin from the CCAR shock is a computationally and data-intensive

task. We begin with a compendium of single-name and index positions and corresponding contrac-

tual information needed for marking-to-market each counterparty’s individual exposures. At each

CCAR valuation date, we generate profit & loss (P&L) using the approach outlined above. In the

following section, we shall discuss how hazard rate curves are generated, and then document how

positions are marked to market.

The change in value of exposures under stress follows from their valuation at baseline and

revaluation after the market shock. At baseline, or under stress, an exposure is valued relative

to the contract’s inception. It is useful to incorporate the counterparty flows in the description

of the net present value (NPV). For example, x sells protection to y. x is long the premium

leg and short the payment leg; stated alternatively, x writes the payment leg, while y writes the

premium leg. Incorporating counterparty flows, suppressing some earlier notation, we express

V 0→Tm y
prem (λ ∗

m , s; λ ∗
m−1 ) as V x

prem(λ, s) and similarly the payment leg as Vpay(λ). The hazard rate

environment that exists at valuation date t n
n is described as λ . Analagously, the environment at

tn under stress is λshock.

The NPV of a swap of $N notional at as-of-date tn is defined:

NPV x→y(N,λn, s) = N
[
V x
prem(λn, s)− V y

pay(λn)
]
. (18)

Similarly, the swap at as-of-date tn under stress is described by:

NPV x→y(N,λshock, s) = N
[
V x
prem(λshock, s)− V y

pay(λshock)
]
. (19)

Under CCAR, credit-risky securities are subject to a variety of shocks absolute and proportional
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to credit spreads, or proportional to market value. Shocks are prescribed across geographies, credit

categories (e.g. municipal, state, and sovereign credit; and corporate credit), and ratings classes.

These reflect the Federal Reserve’s views on current risks for bank solvency. Using the CCAR

trading shock stresses prescribed in Table 1 for 2015, we compute the NPV under stress as follows:

The stressed variation margin at any valuation is the change in NPV between baseline and

stress:

∆MtMx→y = NPV x→y(N,λshock, s)−NPV x→y(N,λn, s). (20)
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