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1 Overview

Central counterparties (CCPs) have assumed a key role in clearing over-the-counter (OTC)

derivatives, thanks to regulatory reforms since the financial crisis (BCBS and IOSCO (2015)). In

a centrally cleared market, parties to a derivatives contract enter into two back-to-back contracts

with the CCP that offset one another. There are several important advantages to this arrangement:

it creates greater transparency and standardization of contracts, it offers greater potential for the

netting of positions, and it shortens the length of intermediation chains, which in principle can

reduce contagion (Cont and Minca (2016)). A significant disadvantage is that it increases systemic

vulnerability by introducing a critical node whose failure would have widespread consequences

(Yellen (2013)). It is therefore crucial to understand whether CCPs can withstand large and

sudden shocks to asset values, such as occurred in the crisis of 2007-09 and in the European debt

crisis of 2011-12.

The conventional approach to stress testing CCPs is to examine whether they have sufficient

funds on hand – in the form of initial margins and default fund contributions – to cover payment

delinquencies if their two largest counterparties should fail to meet clearing obligations (CFTC

(2016)). Several recent papers have argued that this standard is inadequate, because it considers

only the direct impact of the two members’ failure to pay, and does not take into account network

spillover and contagion effects that can amplify the initial payment shortfalls (Nahai-Williamson

et al. (2013), Poce et al. (2016)).

We examine this issue for the U.S. market in credit default swaps (CDS) and its principal central

counterparty, ICE Clear Credit. Although the paper is in the same spirit as Nahai-Williamson

et al. (2013) and Poce et al. (2016), our approach differs in several key respects. First, our access to

Depository Trust & Clearing Corporation (DTCC) data1 means that we have a large representation

of the entire network of CDS exposures at different points in time. Included in the trade-level

details, provided by DTCC, are contractual positions in which the reference entity and/or one of

the counterparties is U.S.-based. Second, we model contagion using a variant of the Eisenberg-Noe

model (2001) that incorporates behavioral responses to balance sheet stress that can be institution

specific. We then estimate the total payment deficiencies that would result from a given financial

1The DTCC data used in this paper are confidential in nature and are provided to the OFR by agreement.
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shock to the system. In particular we consider the impact of shocks that are similar in magnitude to

the Federal Reserve’s 2015 Comprehensive Capital Analysis and Review (CCAR) shock, which was

specifically designed to subject the financial markets to a severe but plausible market stress. Such

a shock triggers a sudden drop in the value of credit instruments, which translates into large and

sudden variation margin payments on CDS contracts. Firms that are large net sellers of protection

may not be able to meet these variation margin payments, which puts increased stress on their

counterparties and can lead to a systemwide cascade of payment delinquencies.2

When we take account of these network spillover effects we find that the CCP for this market is

potentially more vulnerable to default than conventional stress tests would suggest. Indeed, under

plausible estimates of firms’ liquidity buffers, a significant number of member firms may be unable to

meet their variation margin payment obligations, which could lead the CCP to default. This default

risk can be mitigated by increasing the size of the default fund, charging higher initial margins,

requiring greater liquidity by participants in the market, or a combination of these measures.

The plan of the paper is as follows. In the next section we summarize the protections that the

CCP has in place to deal with defaults by its members (the default waterfall). Section 3 discusses

the nature of the DTCC data and how we use it to derive variation margin payment demands and

failure probabilities under the CCAR shock. Section 4 analyzes the Cover 2 standard in the context

of the CCAR shock. Although this analysis suggests that the CCP’s default fund is adequate to

cover the defaults of its two largest members, we show that a different conclusion emerges when we

take into account network contagion. In Section 5 we introduce the contagion model, which traces

how payment delinquencies by some firms can escalate as they cascade through the network of CDS

exposures. A novel feature of this model is the treatment of stress transmission, which depends on

firms’ liquidity buffers (which we treat as random variables) and on their risk management policies.

We demonstrate the sensitivity of the model to different values for the shock and stress transmission

parameters in Section 6.

Section 7 develops a probabilistic model of firm failure rates that takes into account positive

2Poce et al. (2016) study the Italian fixed income market instead of the derivatives market. They apply an
exogenous shock to firms’ equity, estimate the impact on the assets of their counterparties using a Merton model,
and then examine the impact on the CCP for the market in Italian government bonds (Cassa di Compensazione e
Garanzia).Unlike the present study they do not have direct knowledge of firms’ network exposures, but must impute
them. As in our study, however, they find that network contagion effects are substantial and imply a greater risk of
CCP default than does the conventional Cover 2 standard.
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correlation in the failure probabilities. The model is very general and allows us to estimate the

probability of a CCP failure relative to the probability of a member’s failure while making minimal

assumptions about the degree of correlation among member failure rates. We use this model to

estimate the probability that a CCP would default during a stress of similar magnitude to the

CCAR shock. This estimate takes account of two distinct effects. First, the variation margin

(VM) payments are sudden and large, which can lead to payment delinquencies (or default) due

to liquidity constraints. Second, one or more parent firms may fail due to insolvency, which would

lead them to default on their VM payments. We estimate the impact on a CCP of these two effects

in combination. Our conclusion is that, in a severe financial crisis of a comparable magnitude to

the CCAR shock, the CCP could be significantly more likely to fail than a typical member.

2 The CCP waterfall

The major central counterparty for the CDS market in the United States is ICE Clear Credit,

which is a privately held, for-profit company (OFR (2017)). It cleared more than 97 percent of the

notional value of CDS contracts in the United States, as of the date of our study (October, 2014).

The only other central counterparty of any consequence in this market is CME Clearing, which in

2014 cleared less than 3 percent of the contracts. For this reason, this paper focuses solely on ICE

Clear Credit, which we shall refer to simply as “the” CCP for this market.

As of October 6, 2014, 30 member firms were empowered (though not required) to clear their

CDS contracts through the CCP. Contracts with nonmembers are permitted, but in such cases

there must be a member who acts as intermediary and fully guarantees all payments due from the

nonmember to the CCP. Members’ balance sheets are subject to scrutiny by the CCP, they must

post initial margin against their contracts according to rigorous criteria established by the CCP,

and they must contribute to a common guarantee fund that can be drawn on if some members

default on their payments. Indeed, there is a whole series of procedures and safeguards designed

to protect the CCP in case one or more members default. This waterfall structure is outlined in

Table 1.

Initial margins posted by each member are held in a segregated account at the CCP and can

only be used to cover losses generated by that member should it default. Nonmembers also post

3



Table 1: Principal Elements of the Waterfall Structure of ICE Clear Credit as of December 2014.

Tranche Total Amount

Initial Margins $14.1 billion

Guarantee Fund $2.4 billion

CCP Capital $50 million

Member Assessments
Up to 3 times

nondefaulting members’
GF contributions

Note: Initial margins and the guarantee fund are made up of U.S. Treasuries and cash (USD, CAD, EUR, GBP,
JPY).
Source: SEC EDGAR 10-K Filing.

initial margin with the CCP, and any losses they generate (including those in excess of the initial

margin) are supposed to be fully covered by the member who acts as guarantor. The guarantee

fund (GF) is funded solely by the members and is held in a common account to cover losses that

exceed initial margins in the segregated accounts.

If a member defaults, the CCP auctions the member’s portfolio of contracts, or it may transfer

the contracts to non-defaulting members at mutually agreed prices. The initial margin (IM) posted

by the defaulting member is applied to any losses that result from this process. In particular the IM

is applied to the delinquent VM payments plus any further losses that may result from the auction

or transfer process. (The latter may take several days to complete and will typically occur in highly

stressed market conditions, hence the losses incurred in this novation process may be substantial.)

To the extent that the IM is insufficient to cover the losses, the CCP draws on the guarantee fund.

If this also proves insufficient, it taps the shareholders’ paid-in capital, which as Table 1 shows is

very small relative to the other parts of the waterfall. If all of these sources are still insufficient, the

CCP is empowered to assess the non-defaulting members by up to three times the original amount

they contributed to the GF. Although this assessment power would appear to offer a substantial

line of defense, in practice it is not very helpful. The difficulty is that when the GF is exhausted,

many of the members will already be in default and unable to pay the assessments.
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3 The DTCC data and the CCAR shock

We conduct our analysis using detailed data provided to the Office of Financial Research (OFR)

by the Depository Trust & Clearing Corporation (DTCC). The data include all CDS transactions

reported to DTCC in which at least one of the counterparties or the reference entity is a U.S.

entity. We have a detailed picture of counterparty exposures for a large segment of the CDS

market, including exposures between banks, dealers, hedge funds, asset managers, and insurance

companies. We can apply a hypothetical credit shock and compute the value of the payment and

premium legs of each CDS position as a function of spread, duration, and underlying reference

entity.3

We focus on the change in value of each contract, and the resulting VM payment owed to each

counterparty, under of the Federal Reserve’s 2015 Comprehensive Capital Analysis and Review

(CCAR) shock. This shock was designed to test the robustness of the financial system under a

large and sudden change in asset values. The date of the shock was October 6, 2014. The shock

causes a sudden decrease in the value of corporate and sovereign debt instruments, which results

in large and sudden demands for VM on CDS contracts.

The shock is assumed to be large but not implausible. For example, Moody’s estimates that

a shock of this magnitude would occur with probability 4 percent per annum, that is, about once

every 25 years (Zandi (2016)). The question this paper examines is how likely it is that the CCP

could withstand a shock of approximately this magnitude. Specifically, we study the potential

resilience of the CCP under shocks ranging from 0.5 to 1.5 times the magnitude of the CCAR

shock.

The first step is to estimate the probability that each members would fail under the CCAR

shock. We assume that subsidiaries of the same parent firm are likely to fail if and only if the

parent fails so we group the members at the bank holding company (BHC) level and view these 15

firms as the entities that are subject to failure.4 Such a shock implies a widening of credit spreads

on the BHCs, from which we can infer the annual default probabilities using the methodology

described in Luo (2005). On the target date of the shock the implied default probabilities among

3For more detail on the methodology underpinning these computations see Paddrik et al. (2016).
4This approach is consistent with CFTC Regulation 39.33(a) on the implementation of the Cover 2 standard,

which assumes that the two largest BHCs fail.
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the 15 member BHCs ranged from 1.7 percent to 3.5 percent, with an average of 2.5 percent per

annum. These numbers are comparable to the default probabilities implied by CDS spreads during

the financial crisis of 2007-09, as shown in Figure 1.

Figure 1: Annual Default Probabilities Implied by CDS Spreads for the 15 BHCs.

Source: Authors’ calculations, which use data provided by Markit Group Ltd.

4 Conventional risk analysis for the CCP

The usual way of evaluating potential risk to the CCP is to determine whether it has enough

cash or highly liquid assets in its default fund to cover its obligations when two of its members

default simultaneously (BCBS and IOSCO (2015)). This ‘Cover 2’ standard is typically applied

to a scenario where the two defaulting members are assumed to be those with the largest net VM

obligations to the CCP.5

Under the CCAR shock there are eight members that have non-negligible obligations to the

CCP. Assuming that any one of them were to default, the IM collected from that member would

be sufficient to cover the shortfall except in one case in which the default fund would be more than

adequate to absorb the remaining shortfall. (It will be recalled that the default fund as of the

CCAR shock date was about $2.4 billion.) The same conclusion holds if the two largest members

default simultaneously. It would therefore appear that the CCP is well-protected against defaults

by its members even in a highly stressed environment.

5A given member will owe VM to the CCP on some contracts and possibly be owed VM by the CCP on other
contracts.
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We assert that this conclusion is overly optimistic, because it does not account for the amplifica-

tion that can occur through network contagion. The left panel of Figure 2 depicts how conventional

stress testing limits the channels of stress to the direct impact of a shock on the CCP. The right

panel illustrates how stress can become amplified through the complete network of exposures. We

shall show that when two members fail simultaneously and network effects are taken into account,

there is a non-negligible probability that the CCP’s default fund will be insufficient to cover delin-

quent payments by the members. We also argue that the CCP’s ability to tap its members for

additional assessments will be severely limited for two reasons. First, the funds will be needed in a

very short time period (typically a few hours) and the assessments may be contested. Second, many

of the members will already be under severe stress and unable to pay the additional assessments.

Figure 2: Network Depiction of CCP Stress Testing

(a) Limited (b) Complete

Note: M stands for member and C stands for client in the network relationships.
Source: Authors’ analysis.

5 The network contagion model

The network contagion model is a variant of Glasserman and Young (2015) that builds on the

benchmark model of Eisenberg and Noe (2001).6 The key contribution of Eisenberg-Noe is to

show how to define a consistent set of payments when firms have credit obligations to one another

through interlocking balance sheets. If the assets of some firms suffer an exogenous shock, the

6A similar model is used in Paddrik, Rajan and Young (2016) to analyze the extent to which the CCP contributes
to network contagion.
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Eisenberg-Noe framework allows one to compute the extent to which the initial loss in asset values

cascades through the system, possibly leading to further defaults.

In the present context, the set-up is somewhat different: an exogenous shock to credit instru-

ments determines the payment obligations (VM payments) between firms on their CDS contracts.

These payments must be made within a very short time frame – typically just a few hours. If the

VM owed by a given firm exceeds the amount it is owed, the firm experiences short-term stress.

This stress can be relieved by drawing on cash and cash equivalents held by the parent institution,

but if the stress is large, these funds may be inadequate. In that case, the firm may either delay

payments, make some payments in illiquid collateral instead of in cash, or default completely. Any

of these responses will exacerbate the stress on its counterparties, leading to systemwide contagion.

Figure 3: Payment Chain

Source: Authors’ analysis.

To illustrate, consider a hypothetical situation involving three firms (i, j, k) as shown in Figure

3. Firm i owes 100 to firm j, which owes 100 to firm k, shown above the arrows. We suppose that

these VM payments are triggered by a sudden exogenous shock and are due within a few hours.

Suppose that i defaults completely, meaning the realized payment, shown below the arrow, is zero.

Then j seizes the initial margin it collected from i (50 in the square box), but this is not enough

to cover its obligations to k, which are due immediately. Hence j dips into the firm’s treasury (50

in the safe bag) and meets its payment of 100. It could happen, however, that the treasury only

contains 30 in liquid assets, as shown in Figure 4. In this case, j would default in its payment to

k, which could cause k to default to its counterparties, depending on the amount in k’s treasury.

This example shows that the transmission of payment shortfalls is subject to considerable

uncertainty. It depends on the amount of cash available in a firm’s treasury not claimed by other

sources, its non-cash assets on hand, and its relationships with its counterparties. In our network

8



Figure 4: Payment Deficit Contagion

Source: Authors’ analysis.

model, we shall treat these factors as random variables. The approach differs from models based

on Eisenberg and Noe (2001), which treat default as a deterministic event that is triggered when

the default boundary is breached.

We now describe the network model in full. Given a shock to the reference entities on which

CDS contracts are written, we shall represent the induced VM payment obligations by a matrix

[p̄ij ], where p̄ij is the net amount of VM owed by node i to node j in the aftermath of the shock.∑
(Thus, not both p̄ij and p̄ji are positive because they are bilaterally netted.) Let p̄i = j=i p̄ij

be the total payment obligation of i to all other nodes. We shall restrict attention to the nodes i

such that p̄i > 0; the others represent firms that are solely buyers of protection and have no VM

obligations. Let i = 0, 1, 2, ..., n index the nodes with positive payment obligations and let “0”

represent the CCP.

The relative liability of node i to node j is

6

aij = p̄ij/p̄i. (1)

The relative liability matrix A = (aij) is row substochastic, that is for every i, ≤j=i aij 1.

For each node i, let cki denote the amount of initial margin i collects from counterparty k. The

purpose of the IM is to cover possible payment delinquencies. In particular, if counterparty k fails

to pay VM to i in a timely manner, the position may be closed out and the IM will be applied to

any losses that are incurred between the time of the counterparty’s default and the time it takes

to close out the position. Alternatively, i may accept partial payment by k and not close out the

position, but seize the IM as security until the balance is paid. (Of course this is risky because the

∑
6
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value of the contract to i might deteriorate further in the interim.)

Let pki ≤ p̄ki denote the realized current payment from k to i. If pki < p̄ki the difference will

be made up out of the initial margin sitting in k’s account at firm i provided p̄ki − pki ≤ cki. If

p̄ik − pki > cki, then the difference p̄ik − (pki + cki) must be borne by i. We define the stress at

i, si, to be the amount by which i’s payment obligations exceed the incoming payments from i’s

counterparties buttressed by the initial margins, that is,

si = ∑
k=i

p̄ik −
∑
k=i

((pki + cki) ∧ p̄ki)
+

.7


6 6


(2)

Note that when all of i’s counterparties pay in full, that is pki = p̄ki for all k, then there is no

stress at i (si = 0).

As previously noted, firms will react to stress in ways that depend on such factors as their

liquidity buffers, non-CDS positions, and general risk management policies. We do not have enough

information to model these factors explicitly. Instead, we shall adopt a reduced-form approach in

which we posit a response function for each firm i that maps the amount of stress, si, to an expected

deficiency in payments

di = p̄i − pi = fi(si). (3)

It is natural to assume that fi(si) is monotone increasing in si, that is, the greater the stress

the greater the expected deficiency in payments. Although fi may not be known precisely, we can

sometimes bound it from below a truncated linear function:

di = fi(si) ≥ τisi ∧ p̄i, τi ≥ 0. (4)

The scalar τi is a transmission factor. When τi is small the firm is able to absorb most of the

stress, for example by drawing on its own cash reserves. The larger the value of τi, the more the

stress is passed on to i’s counterparties in the form of reduced payments.

The linear form can be used to place a bound on various responses to stress. To illustrate, let

bi denote the liquid reserves available at firm i to handle VM payment obligations. Let us view bi

7In general, x ∧ y denotes the minimum of two real numbers x and y.
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as the realization of a random variable Bi with density gi(bi) on some interval of the nonnegative

real numbers. This random aspect of bi may reflect unobserved heterogeneity in the firm’s risk

management practices and fluctuations in the quantity of cash reserves available for financing CDS

operations.

Assume that i defaults if its reserves, together with incoming payments and posted IM, are

insufficient to cover its obligations, that is, bi < si. The expected deficiency in i’s VM payment is

di = p̄i P(bi < si). (5)

To estimate the quantity P(bi < si), note that the maximum demand on i’s reserves equals i’s

total obligations p̄i, hence it is reasonable to assume that the support of Bi is [0, p̄i]. Second, let us

suppose that gi(bi) is nonincreasing, that is smaller reserves are at least as likely as larger reserves.

Then for every realized level of stress si,

P(bi < si) ≥ si/p̄i. (6)

Together (5) and (6) imply

di ≥ si, (7)

that is, the transmission factor is at least 1.

There may be some situations in which i’s counterparties are willing to accept partial payment,

or payments in illiquid collateral whose cash value is less than p̄i. Let r(p̄i) be the expected VM

payment conditional on i’s default, which we can write as

di = (p̄i − r(p̄i)) P(bi < si). (8)

The value of r(p̄i) will depend on various factors that are specific to firm i, and also on i’s

relationships with its counterparties. A fairly conservative assumption is that r(p̄i) ≤ p̄i/2, in

which case (6) and (8) imply that

di ≥ si/2. (9)
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This suggests that values in the interval [1/2, 1] are plausible lower bounds on the transmission

factors τi. Note, however, that values larger than 1 can result if a firm engages in precautionary

hoarding, such as delaying payments to counterparties to preserve its liquidity. In what follows, we

shall therefore consider values of τi that lie in the interval [0.5, 1.5].8

In the case of the CCP we have additional information that allows us to estimate the transmis-

sion factor more precisely. Liquid reserves are held in a guarantee fund (GF), which is available

to cover residual losses when the members’ initial margins are depleted.9 Let ck0 be the initial

margin collected by the CCP from each member k = 0, and let γ0 be the total amount in the

CCP’s guarantee fund. Then the difference between the CCP’s VM obligations and the resources

it has to meet them is

6

s0 = ∑
k=0

p̄0k −
∑
k=0

((pk0 + ck0) ∧ p̄k0)− γ0
+

,


6 6


(10)

where k ranges over the CCP’s members.

In theory, the CCP can draw on additional resources to cover the amount s0, namely members’

paid-in capital and additional member assessments. In practice, however, the capital is negligibly

small (about $50 million compared to γ0 = $2.358 billion. It is unlikely that assessments could

raise much cash on very short notice, especially because many of the members will already be

under severe stress and their liquid reserves used up. We shall assume that τ0 = 1, that is, the

CCP transmits any residual balance sheet stress directly to its members by applying a haircut to

the net amount it owes them (a practice known as variation margin gains haircutting). It follows

that the payment from the CCP to each counterparty j is

p0j = [p̄0j − a0js0]+ . (11)

8Similarly, Poce et al. (2016) posit a liquidity parameter ρ ∈ [0, 1] that determines how much a firm can offset
stress on its balance sheet by drawing on liquid reserves. They assume a value of ρ that corresponds to τ = 0.60 in
our model.

9To determine the amount of IM posted (where IM is required) we adopt a conventional portfolio-at-risk measure,
namely a 99.5 percent VaR with a 10-day margin period of risk (BCBS and IOSCO (2015)). For each pair of firms i
and j, the DTCC data tells us the portfolio of CDS contracts for which i and j were the counterparties on the date
of the shock. Using Markit data we can infer the price changes, and hence the VM that would have been exchanged
between i and j, if they had held this same portfolio over the prior 1,000 days. We then find the amount cij such
that on all but five days out of 1,000 the net amount of VM that i owed j was less than cij .
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Given any vector p ∈ R2n+2 such that 0 ≤ pij ≤ p̄ij for all 0 ≤ i, j ≤ n, let Φ(p) be the mapping

defined by expressions 2 - 11, that is,

∀i = 0, Φ(p)ij = p̄ij − τiaij ∑
k=i

p̄ik −
∑
k=i

((pki + cki) ∧ p̄ki)
+


+

,6

 
6 6

 
(12)

Φ(p)0j = p̄0j − a0j ∑
k=0

p̄0k −
∑
k=0

((pk0 + ck0) ∧ p̄k0)− γ0
+


+

.

 
6 6

 
(13)

Φ is monotone and bounded, hence by Tarski’s Theorem it has at least one fixed point (Tarski

et al. (1955)). In the empirical applications we shall specify values for the parameters τ0, τ1..., τn,

and then recursively compute the greatest fixed point of this system by taking the limit of the

sequence p1 = Φ(p̄), p2 = Φ(p1), ....

6 Sensitivity analysis

We now apply this framework to evaluate the potential amount of contagion in the CDS market

that would be produced by a shock over a range of values for τ and α. We define the total impact

of the shock to be the total deficiency in VM payments summed over all directed edges in the

network.10 In our notation the total deficiency can be expressed as follows

D = D(τ, α) =
∑
i

di, (14)

where di = p̄i− pi and (p0, ..., pn) is the equilibrium payment vector representing the greatest fixed

point of the mapping Φ. For simplicity, let us assume that τ1 = τ2 = ... = τn = τ for some scalar

τ ≥ 0 and τ0 = 1 for the CCP. For various values of τ and α we compute the payment deficiency

D = D(τ, α); the results are shown in Figure 5.

Figure 5 shows that the total deficiency D(τ, α) is convex and increasing in both τ and α. For

values of α greater than 1, the shock becomes large enough to overwhelm both the IM posted by

members of the CCP and the guarantee fund held by the CCP. The ensuing default by the CCP

leads to large payment deficiencies to its members that cascade through the system.

10A deficiency in payment from a given counterparty i to another counterparty j leads j to tap the IM (if any)
that it collected from i to deal with such contingencies. This represents a loss to firm i.
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Figure 5: Payment Deficiency, D(τ, α)

Source: Authors’ calculations which use data provided to the OFR by The Depository Trust & Clearing
Corporation and Markit Group Ltd.

The application of a common value τ to all nodes in the system is purely for illustrative pur-

poses. In reality, the values τi will depend on the risk management policies and liquidity buffers of

particular firms. We do not have enough information to pin down these values precisely but the

curves in Figure 5 give some idea of the magnitude of the impact for different levels of τ and α.

7 Estimating the probability of CCP failure

We now apply our model to the situation where VM payments are determined by a shock, and

one or more members fail completely due to other (unmodelled) stresses on their balance sheets.

The magnitude of the shocks are assumed to be similar to the 2015 CCAR shock and are fairly

severe but not implausible.

The first step is to specify values of the transmission parameters τi. As previously noted

these values will depend on characteristics of individual firms that are mostly unobservable. For

illustrative purposes we shall assume they are all equal to some target value τ that lies in the

interval [0.5, 1.5]. Fix a value for τ and assume that a subset of k members of the CCP fail

simultaneously, where 0 ≤ k ≤ 15. The failed members cannot meet any of their VM obligations,
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which are determined by a shock. We shall explore values of α in the range [0.5, 1.5], where α = 1

corresponds to the 2015 CCAR shock itself.11

Given values α and τ , and given a specific subset of k members that fail, one computes the

greatest fixed point of the mapping Φ in (12) - (14) to find the equilibrium payments. The CCP

fails if in equilibrium it has a deficit, because in this event it has exhausted the stock of IM posted

by defaulting members and also the guarantee fund.12

The next step is to determine how often the CCP fails, that is for a given integer k, 1 ≤ k ≤ 15,

what proportion of draws of k members from 15 lead to the CCP’s failure? Denote this proportion

by hα,τ (k). This is the conditional probability that the CCP fails given that exactly k members fail

for exogenous reasons, the shock is of size α, and the transmission factor for all firms equals τ .

Figure 6: Probability of CCP Default when τ = 1.

Note: Probability of the CCP suffering a default given one, two, three or four BHC members fail, assuming the
transmission factor τ = 1.
Source: Authors’ calculations, which use data provided to the OFR by The Depository Trust & Clearing
Corporation and Markit Group Ltd.

The final step is to estimate the probability that k members would fail simultaneously in a period

of severe financial stress. This is difficult to do with any precision because severe financial crises

are very infrequent. One of the few attempts to estimate these probabilities was done by Giglio

11As remarked earlier, Zandi (2016) estimates that a shock at least as large as the 2015 CCAR shock has a
probability of about 4 percent. Assuming the shocks are normally distributed, a shock that is 1.5 times as large
would have a probability of about 0.7 percent.

12As mentioned earlier, the CCP can draw on two further sources of funds to stay afloat, namely the CCP’s capital
and assessment powers. However the first is of negligible size (see Table 2) and the second has limited scope because
if the CCP fails, most of its members will already be in default.
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(2011). Based on historical CDS spreads, he estimates the joint failure probabilities for a group

of 15 BHCs, using the fact that some BHCs wrote CDS contracts on the failure of others in the

group. His estimates suggest that there was significant positive correlation in the market-implied

default rates among members of the group.

Given the considerable uncertainty surrounding these estimates, however, we adopt a different

and more general estimation strategy. Namely, we shall show how to bound the probability that the

CCP defaults relative to the probability that a typical or average member defaults under minimal

assumptions about the degree of correlation in the default rates. Consider a set of n member firms,

and let Qk denote the probability that exactly k of them fail in a period of stress. For given values

of α and τ , let hα,τ (k) be the conditional probability that the CCP fails given that exactly k of its

n members fail. The average probability that a given member fails can be written

p =
n∑
k=0

kQk/n. (15)

The probability that the CCP fails is

q =
n∑
k=0

hα,τ (k)Qk. (16)

We wish to estimate the ratio q/p; in particular we shall bound it from above and below under

mild restrictions on the probabilities Qk. Specifically let us assume that they are nonincreasing in

k (Q1 ≥ Q2 ≥ ... ≥ Qn), and for sufficiently large k the Qk’s are close to zero.13

To bound q/p from below we solve the optimization problem

min q/p =
n
∑n

k=0 hα,τ (k)Qk∑n
k=0 kQk

, (17)

subject to

1 ≥ Q0 ≥ Q1 ≥ ... ≥ Qn ≥ 0

∀k ≥ k̄, Qk = 0

(18)

13These assumptions are consistent with Giglio’s estimates. His data suggest that during the 2007-09 crisis, Q2

was almost an order of magnitude smaller than Q1, and Q3 was about half the size of Q2. (These estimates are based
on Figure 10 in Giglio (2011) over the period of July 2008 through June 2009.)
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An upper bound on q/p is found by solving the corresponding maximum problem.

We estimate the conditional failure probabilities hα,τ (k) by successively choosing singles, pairs,

triples, and quadruples at random from the 15 BHC members and computing the proportion of

cases in which the CCP fails. The results are shown in Figure 6 for the value τ = 1. To illustrate

the method for estimating q/p, consider the case α = 1.25. The conditional failure probabilities are

h1.25,1(0) = 0.00, h1.25,1(1) = 0.27, h1.25,1(2) = 0.70, h1.25,1(3) = 0.91, h1.25,1(4) = 0.99.

(19)

¯Let us further assume that Qk = 0 for all k ≥ k = 4. (This is a conservative assumption; in

fact the U.S. authorities did not allow more than two large institutions to fail during the recent

financial crisis.)14 By solving the corresponding optimization problems with n = 15 we find that

q/p satisfies the bounds

4.05 ≤ q/p ≤ 4.85. (20)

¯These bounds are not particularly sensitive to the cut-off value k. For example, suppose that

Qk = 0 for all k ≥ 5. It can be shown that in this case q/p satisfies precisely the same bounds

as in (20). If we assume that Qk = 0 for all k ≥ 6, we obtain the bounds 3.86 ≤ q/p ≤ 4.85.

The implication is that, under a shock that is somewhat larger than the 2015 CCAR shock and

assuming that the transmission factor τ = 1, the CCP would be about four to five times more likely

to fail than a typical member.

Table 2 shows the estimated bounds for q/p under different combinations of τ and α, assuming

that Qk = 0 for all k ≥ 4. Note that when either τ or α is 0.75 or less, the CCP is unlikely to fail.

However if the shock is somewhat larger than the CCAR shock (α ≥ 1.25) and if τ ≥ 1.25, the

CCP would be at greater risk of failure than the average member firm.

14Two large firms defaulted (Lehman and Bear Stearns) and two others (Merrill Lynch and AIG) came close to
default but were rescued by the authorities. The evidence from the crisis suggests that it is highly unlikely that three
or more large firms would be allowed to fail. Moreover the market implied default rates during the crisis also assigned
a low probability to four or more failures (Giglio (2011)).

17



Table 2: Estimated Bounds of q/p

α
0.50 0.75 1.00 1.25 1.50

0.50 0.0 0.0 0.0 0.0 0.0
0.75 0.0 0.0 0.0 0.0 0.0-0.2

τ 1.00 0.0 0.0 0.0 4.1-4.9 7.1-13
1.25 0.0 0.0 1.0-1.3 7.5-15 7.5-15
1.50 0.0 0.0-0.2 7.5-15 7.5-15 7.5-15

Source: Authors’ calculations, which use data provided to the OFR by The Depository Trust & Clearing
Corporation and Markit Group Ltd.

8 Conclusion

We have proposed a general framework for assessing the ability of a CCP to withstand a severe

credit shock. The framework differs from conventional stress testing of CCPs in several key respects.

First, we consider the possible impact of one or more members failing, not just the two members with

the largest net exposures to the CCP. The failure of the largest two members is an event that may

have a large direct impact but a smaller probability than an event in which one or more members

fail at random, hence the expected failure rate may be underestimated. Second, we consider the

impact of the failing member(s) on all their counterparties, including other members of the CCP

as well as non-members. This is crucial because payment deficiencies by the failing member will

be transmitted and amplified through the network of exposures, increasing the ultimate impact

on the CCP. Third, we propose a novel estimation methodology that allows us to place a lower

bound on the amount of network contagion in the absence of detailed information about the liquid

reserves of individual firms. In this respect the model differs markedly from conventional contagion

models such as Eisenberg and Noe, which require detailed knowledge of the firms’ balance sheets

to determine the ultimate impact of a shock. Finally, we show how to estimate bounds on the

probability that the CCP will fail relative to the probability that an individual member will fail,

with minimal information about the degree of correlation among member failures, which in practice

is difficult to estimate empirically.

Overall, our results suggest that conventional stress testing approaches may underestimate the

potential vulnerability of the main CCP for this market. The results do not include several channels

that could further increase the amount of contagion and the concomitant risk of CCP default. One

such channel is increased demand for IM in times of financial stress when firms may demand
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that their counterparties increase the amount of IM they post. These demands have the effect

of placing the counterparties under even greater stress. A second channel consists of single-name

CDS contracts in which the underlying is a bank holding company(BHC). The stress induced by

demands for large VM payments may push some of these BHCs closer to (or into) default, which

will trigger large VM payments by the sellers of CDS on these companies. A third channel is fire

sales: when a seller of protection defaults on its VM payments, the counterparty will try to find

another (solvent) firm that is willing to assume the position of protection seller. This expansion

of supply in the face of weak demand will tend to increase the cost of novating the contracts and

lead to potential losses that are not covered by the defaulting party’s IM. All of these effects can,

in principle, be incorporated into the model, and will exacerbate the amount of contagion in the

system. The framework we have presented is a simple way of estimating a lower bound on the

amount of contagion and its potential impact on the CCP.
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