
The Office of Financial Research (OFR) Working Paper Series allows members of the OFR staff and 
their coauthors to disseminate preliminary research findings in a format intended to generate 
discussion and critical comments.  Papers in the OFR Working Paper Series are works in progress and 
subject to revision.  

Views and opinions expressed are those of the authors and do not necessarily represent 
official positions or policy of the OFR or Treasury. Comments and suggestions for improvements 
are welcome and should be directed to the authors. OFR working papers may be quoted without 
additional permission. 

Aggregate Risk in the Term Structure of 
Corporate Credit  

Johannes Poeschl 
Danmarks Nationalbank 
jpo@nationalbanken.dk 

Ram Yamarthy 
Office of Financial Research 
ram.yamarthy@ofr.treasury.gov 

22-02 | April 14, 2022

mailto:jpo@nationalbanken.dk?subject=OFR%20Working%20Paper%2022-02
mailto:ram.yamarthy@ofr.treasury.gov?subject=OFR%20Working%20Paper%2022-02


Aggregate Risk in the Term Structure of
Corporate Credit

Johannes Poeschl and Ram Yamarthy*

April 2022

Abstract

Recent global crises have brought to light the risks that corporate credit markets are
exposed to, particularly in the tails of the distribution. Using firm-level, credit default
swap (CDS) data across maturities, we discuss two stylized facts. First, while the
term structure of credit spreads is upward sloping on average, firms that are close to
default exhibit a negative slope. Second, shorter-term credit spreads display greater
counter-cyclicality to aggregate risks, a fact that is driven by the behavior of financially
constrained firms. To better understand these dynamics, we construct a novel, dynamic
model of firm behavior where corporations issue short and long maturity debt to finance
investment. The model generates an endogenous credit spread term structure that
matches these facts across a distribution of firms. Moreover, we find that dis-investment
by the most financially constrained firms, in order to gain additional cash in recessions,
can actually amplify stress.
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1 Introduction

Through financial crisis episodes over the last two decades, economic policymakers and re-

searchers have witnessed large tail risks manifest themselves in the real and financial activity

of corporations. In the 2007-09 Global Financial Crisis, for example, financially constrained

firms were hit the hardest as they were forced to draw on available credit lines and forego prof-

itable investment opportunities (Campello, Graham, and Harvey, 2010). Such inequalities

also appeared in credit markets amid the COVID-related turbulence in 2020, as high yield

debt markets sunk at a faster pace than investment grade markets prior to government inter-

ventions in March (Haddad, Moreira, and Muir, 2021). Separate from these recent events,

long-standing literature argues that corporate debt maturity management allows firms to

cushion themselves against liquidity runs in downturns. This has been shown to be an op-

timal strategy in classical models of debt maturity (e.g., Diamond, 1991) and empirically

relevant in studies of firm-level capital structure decisions.1

In this paper we connect these ideas and study how aggregate risk is priced in the

term structure of credit spreads. In particular, we examine the cyclicality of the term

structure of credit spreads, and how it differs for safe and risky firms. We start by examining

these questions in the data using non-financial, corporate credit default swaps (CDS) across

multiple maturities, from late 2001 through mid-2021. We find two key stylized facts. First,

while the average firm’s term structure of credit spreads is upward sloping, firms that are

close to default exhibit a switch in the sign of their term structure slope. That is, short-term

credit spreads become larger than long-term ones. Second, we find that spreads at the short

run tend to be more counter-cyclical with respect to aggregate risks, than spreads at the

long end. This second finding is particularly driven by sensitivities of the riskiest firms in

recessions and is robust to measurement of aggregate risk.

To better understand the potential mechanisms that determine these facts, we design a

dynamic, heterogeneous firm economic model, where corporations finance investment using

debt and equity issuance. Corporations elect to use debt due to a tax shield and distress cost

tradeoff that is standard in the literature (Hennessy and Whited, 2005), while equity is issued

as a last resort due to its high issuance costs. The model contains aggregate shocks which

drive business cycles while idiosyncratic shocks drive cross-sectional dispersion. What makes

the model unique is that each period, firms have access to two pari-passu debt contracts (one

quarter and five-year securities) with endogenous default risk. Firm default constitutes a

1A managerial survey paper by Bodnar, Graham, Harvey, and Marston (2011) suggests that CFO’s are
concerned about issuing new loans in bad times. Both Mian and Santos (2018) and Xu (2017) discuss how
corporations try to refinance shorter maturity debt into longer term debt when credit conditions are strong,
to hedge off liquidity risks in recessions.
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failure to pay both contracts. Default risk is fairly priced in both contracts by intermediaries,

and costly default and a convex stochastic discount factor (SDF) help to generate substantial,

countercyclical credit spreads. Most importantly, because the model simultaneously features

time-varying spreads at multiple maturities, it allows us to directly speak to the empirical

facts we earlier mentioned. The multiple maturity choice also separates our work from other

literature where the model only contains one debt contract with longer maturity or a setting

where maturity choice is implicitly determined through the rate of debt retirement.

2

3

We calibrate the model to match key moments in the data including leverage, the long-

term debt share, default and recovery rates, and equity and long-term debt issuance fre-

quencies. At a high level, the model produces pro-cyclical aggregate investment and debt

issuance, with countercyclical credit spreads across both debt maturities. In the cross-

section, the model also matches the stylized empirical facts from the CDS data. While the

term structure is positively sloped for the large majority of firms, the slope reduces and turns

negative for a small fraction of financially constrained firms. Additionally, the shorter end of

the credit spread curve is more sensitive to business cycle fluctuations for these very firms.

How does the model match these cross-sectional patterns in credit spreads? As the

weakest firms become financially constrained in recessions, they become more needy of cash

on hand due to reductions in profits. Additionally, due to a leverage ratchet effect (Admati,

Demarzo, Hellwig, and Pfleiderer, 2018), these firms keep rolling over their long-term debt

and maintain a high leverage ratio, which further increases their riskiness. While debt

issuance is preferred relative to equity issuance, these firms effectively get priced out of both

short and long-term debt markets, as the level of spreads sharply increases due to credit risk.

Furthermore, the slope of the term structure turns increasingly negative as unconditional

short-term probabilities of default are higher than longer-term conditional probabilities. As

a result, the most constrained firms end up, dis-investing (on net) out of their capital stock

to avoid having to issue costly equity. The dis-investment channel amplifies the movement

4

2While speaking to the credit spread data, the model also implies that firms with an intermediate risk
profile use short-term debt as bridge financing: if they receive positive shocks in the future, they can roll
over short-term debt into long-term debt, while if they receive negative shocks, short-term debt allows them
to deleverage fast. This is consistent with recent empirical literature (e.g., Kahl, Shivdasani, and Wang
(2015)).

3Kuehn and Schmid (2014) features a corporate finance model where firms have access to a single, long-
term security. Meanwhile, Chen, Xu, and Yang (2021) allow for reissuance of debt with a new maturity
structure, but only with one contract at a time. In the sovereign default literature, using a model with long-
term debt, Arellano and Ramanarayanan (2012) explain how issuing long-term debt helps hedge movements
in sovereign credit spreads.

4Because the shocks that push financially constrained firms to the default boundary are transitory in
the model, annualized long-run default probabilities for these very firms are lower than short-run default
probabilities. For the same reason, annualized long-run default probabilities are higher than short-run
probabilities for relatively unconstrained firms.
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towards default as cash flows, which are a function of total invested capital, reduce further.

Moreover, endogenous investment plays a significant role in the default and term structure

dynamics.

Beyond our main contributions, there are other findings of interest. In the empirical

section, we show that a decomposition of corporate credit spreads into expected losses (pure

compensation for default risk) and credit risk premia (a residual that accounts for covariation

of risk aversion and default) yields interesting results. Following the Berndt, Douglas, Duffie,

and Ferguson (2018) methodology, expected losses explain a greater proportion of level and

cyclicality effects at the short horizon of the CDS curve, while risk premia dominate CDS

spreads at the longer end. Moreover, while the term structure of credit risk premia becomes

increasingly upward sloping for the riskiest of firms, the slope of expected losses is even more

so negative.

In the model section, we further explore the mechanisms that govern firm behavior. We

find that investor risk aversion and equity issuance costs play a strong disciplining role in

debt markets. In an environment where market participants are risk neutral, equilibrium

leverage increases dramatically as credit investors and equity holders no longer overweight

the risk of being financially constrained in recessions. Similarly, when equity issuance is

costless, firms know they can raise capital cheaply when close to default. As a result they

end up taking on more risk through leverage. The model also shows interesting interaction

effects between the two key state variables – current net worth and long-term debt. This

leads to a rich, endogenous cross-section of credit spreads.

Having described key results in the paper, we close the section by comparing our work

to some relevant and existing literature. In the next section we discuss empirical evidence

regarding term structure data for CDS. In the third and fourth sections, we introduce the

model and present its quantitative results. In the final section we conclude.

Related Literature

In our empirical section we examine the macroeconomic information contained in credit mar-

kets. While we study contemporaneous relationships using correlated credit measures in CDS

markets, Gilchrist and Zakraǰsek (2012) examine the predictive nature of bond-based credit

spreads towards aggregate macroeconomic variables such as GDP and investment growth.

Similarly, Faust, Gilchrist, Wright, and Zakraǰssek (2013) look at the real-time forecasting

ability of real variables using credit spreads and find that the inclusion of spread measures

is vital for prediction. In a paper that uses the same dataset as us, Han, Subrahmanyam,

and Zhou (2017) discuss that the term structure of credit default swaps has predictive power

for future stock returns. More specifically, the authors show that firms with a higher slope
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of CDS spreads have relatively lower stock returns over the future 6 months. Higher CDS

slopes also predict a future reduction in credit quality. Augustin (2018) shows for sovereign

debt that countries with a negative CDS term structure slope potentially display adverse

economic outcomes in the near future. Our work can be thought of as an extension of this

idea to corporate bond markets. In the empirical section of Chen et al. (2021), the authors

also describe a link between debt maturity and systematic risk and show that firms with

greater systematic risk (market beta) are those that have higher long-term-debt ratios. In

contrast, we show that firms that are riskier ex-ante, as determined by their CDS ranking,

are those whose spreads price greater aggregate risk.

Our work also contributes to the structural literature on long-term debt models and debt

maturity. To our knowledge, our model is the first dynamic asset pricing model with aggre-

gate risk, endogenous investment, and two fairly priced debt contracts of varying maturity.

This allows us to address our novel facts about the term structure of credit spreads and

study its implications for corporate policies. Merton (1974), Leland (1994), and Leland and

Toft (1996) involve the optimization of firm cash flows with (single maturity) debt contracts,

however they all take cash flows to be exogenous and assume commitment of the total stock

of debt (i.e., constant repayment and issuance). We show that endogenous investment in-

teracts significantly with debt maturity choice and that the lack of commitment adds to the

level of credit spreads.

Greenwood, Hanson, and Stein (2010) produce a gap-filling theory with habitat investors

to explain the pro-cyclical nature of long-term debt issuance. To better understand the great

reliance of financial firms on short-term debt, Brunnermeier and Oehmke (2013) discuss a

theoretical model where creditors optimally reduce their offered maturity in response to

the diluting actions of other creditors. Kuehn and Schmid (2014) embed a long-term debt

contract into an investment-based framework with Epstein-Zin preferences. He and Milbradt

(2016) is like our paper in that they discuss a debt-rebalancing problem with short and

long-term debt simultaneously. However, the authors focus on circumstances where the

fundamental aggregate state is deteriorating and a debt shortening equilibrium emerges.

Also, they fix the total amount of debt (the sum of short and long), whereas we allow for

full flexibility.

In highly related work that involves endogenous investment, Jungherr and Schott (2021)

embed two simultaneous, risky debt contracts without commitment at different maturities.

While they focus on the model’s general behavior and compare to a setting with a single

short-term debt contract, our goal is to study the implications of the model for corporate

credit spreads. For this purpose, we embed a countercyclical stochastic discount factor to

better align asset prices to credit spread data and discuss the behavior of firms that are closer
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to default. The model in Chen et al. (2021) allows for reissuance of debt with endogenous

maturity choice at each point in time. In contrast with our work, cash flows are taken to be

exogenous. Newly issued debt wipes away existing debt and doesn’t allow for a comparison

across a firm’s term structure. Hu, Varas, and Ying (2021) present a model of endogenous

maturity management, but without endogenous investment.

2 Empirical Evidence

In this section we document stylized facts related to cross-sectional and time series patterns

of corporate credit spread data. Our goal is to understand the degree to which aggregate

risk is priced in the term structure of credit spreads. We start with a brief description of the

data, followed by a discussion of the various tests we conduct.

2.1 Data Summary

To proxy for corporate credit risk we primarily use credit default swap data. There are

multiple reasons why CDS data are ideal for our study. First, as CDS are insurance contracts

tied to default events of firms, they are directly reflective of a risk spread that is not dependent

on the proper correction of a risk-free rate. Second, because CDS contracts are traded

frequently by several institutions (hedge funds, banks, etc.) relative to corporate bonds that

trade infrequently, they are less susceptible to pricing frictions that arise from illiquidity

and imperfect information (see Bai and Collin-Dufresne (2019)). Hence, they are a purer

measure of credit risk. Finally, because CDS contract terms and pricing conventions are more

standardized, they allow for more direct comparison across firms (see Han et al. (2017)).

At the firm-level, we collect CDS quotes from Markit across three maturities (1Y, 5Y,

10Y) and insist that firms report all three maturities on a given day. These data are available

at the daily frequency, are firm-specific, and represent the bid-ask average from multiple

reporting dealers. We use CDS that are linked to bonds that are senior and unsecured

(Markit tier category SNRFOR) and are based on the no restructuring (XR) docclause.

We remove all data that correspond to the Financials, Utilities, and Government sectors

in Markit. These empirical specifications are very similar to those used in Berndt et al.

(2018). In addition, to control for outlier values as done in Gilchrist and Zakraǰsek (2012),

we winsorize all data at the .5% level. All CDS data go from late 2001 to mid-2021 and we

take month end values for each firm to generate a monthly, panel dataset.

5

5Markit data also makes available a 6M CDS in some cases but we choose to discard this as conditioning
on its availability substantially shrinks our cross-section.
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In subsequent tests we control for both firm-level accounting data and examine data

related to physical probabilities of default. To do so, we merge in quarterly financial state-

ment data from Compustat and daily default probability data from Moody’s Analytics. The

time-varying default probabilities (expected default frequencies or “EDF”) from Moody’s

arise from a Merton (1974) or Leland (1994) style model, that depends on a firm’s market

value of equity and underlying return volatility. In these tests we additionally exclude finan-

cial firms (SIC codes 6000 – 6999), utility firms (SIC 4900 – 4999), and quasi-governmental

and non-profit firms (SIC 9000 – 9999). Merging in both of these datasets cuts our sample

roughly in half, so we conduct a number of tests with purely the CDS sample and check its

robustness in the merged samples.

We report summary statistics of our CDS data in Table 1. Each row of the table reports

the mean of cross-sectional moments, with respect to various maturities. In the top panel

and first three columns, we show that the average 1Y, 5Y, and 10Y prices are given by 1.43,

2.21, and 2.44 annual percentage points respectively. This upward sloping term structure is

robust to looking at the merged sample with Compustat data (middle panel), examining the

merged sample with EDF data (bottom panel), or studying positive and negative growth

states (middle and right panels). As expected, negative states display higher CDS spreads

across all maturities while positive states are lower. While the average term structure is

upward sloping, the cross-sectional standard deviation is largely downwards sloping in the

top panel; even more pronounced is the downwards slope of the skewness and kurtosis. These

latter results will end up playing a role as we think about the pricing of aggregate risk.

6

The effect of the merge with Compustat or Moody’s data is clear as both of these data

focus on samples with larger firms and stronger credit profiles. This is displayed in Figure

1. In the figure each panel displays median values over time with respect to a particular

maturity. The merged samples are consistently lower in value and the differences in CDS

spreads are most noticeable during the 2007-09 financial crisis period. The number of firms

shrinks by roughly one half between the CDS-only sample and the other two samples. As

shown in Figure 2, the full sample averages roughly 500 firms each month while the two

merged samples are closer to 250 and 200, respectively.

2.2 Credit Spread Term Structure

Our first object of interest is the credit spread term structure and how it varies across ex-ante,

firm-level riskiness. Our work is, of course, not the first to study such topics. As Han et al.

(2017) discuss, the credit spread slope can be informative of firm fundamentals. The authors

6Positive economic growth states are dates where quarterly industrial production growth falls in the top
25% of realized outcomes, while negative ones fall into the bottom 25%.
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show that a lower slope predicts future decreases in default risk, increases in profitability, and

higher future stock returns. Using sovereign CDS to study country-level credit risk, Augustin

(2018) suggests that a country’s term structure slope can provide information regarding the

structure of underlying risk factors. Furthermore, countries that exhibit a negative slope

can have adverse implications for future, country-specific economic growth. Our empirical

results can be interpreted as an application of the latter findings to non-financial corporate

firms.

2.2.1 Overall Dynamics

We start by sorting firms into quintile risk buckets based on their 1-month lagged 1Y CDS

value. Based on these quintile rankings, we examine average CDS values, Compustat mo-

ments, and EDF data as well. These values are displayed in Table 2 and reflect data from the

matched CDS-Compustat sample. As expected, the one-, five-, and ten-year CDS spreads

increase in average value as we move from risk group 1 to 5. Similarly, the slope of the term

structure also increases as a function of ex-ante risk. In terms of accounting characteristics,

leverage and the long-term debt ratio are both increasing in risk type. For example, risk

group 1 firms have a leverage of 28% while those in group 5 exhibit a 43% leverage rate. In-

tuitively, as risk increases, average book size, market size, market-book ratio, and investment

growth all decrease. For group 5 firms, investment growth is actually negative on average.

8

7

Finally, the bottom panel of Table 2 displays information regarding the physical default

probabilities. Overall, 1Y and 5Y EDF measures display average values of 1.22% and 1.04%,

respectively. While this suggests a negative slope of EDF’s, it is important to note that

this does not suggest that the five-year cumulative probability of default is less than the

corresponding one-year value. Rather, the EDF’s are geometrically compounded annual

probabilities that match up with maturity-specific cumulative default probabilities. This

means that the negative EDF slope implies that short-term default probabilities are less

than longer-term conditional probabilities (i.e., hazard rates). This negative EDF slope

becomes particularly pronounced as we move to risk group 5 (slope of -1.43%).

2.2.2 Tails of the Risk Distribution

Sorting firms into coarse quintiles masks interesting dynamics in the extreme tails of risk.

In Table 3, we look at firms that are in the top percentiles of risk, from 25 to 1%. Note

that each data point reports the average value of a particular statistic, conditional on firms

7Similar results hold when we sort on the average level of CDS across maturities.
8Because we examine a merged sample that involves some of the largest firms, leverage and long-term

debt ratios are larger than what is reported in other papers (for example, Kuehn and Schmid (2014)).
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being in the top X% of lagged 1Y CDS spreads. In this portion of the distribution, we can

observe that the slope of the term structure actually ends up flipping signs, moving from

141 b.p. at the 25% mark to -160 b.p. at the 1% mark. Even within the smaller Compustat

and EDF-merged samples, we see that the slope decreases sharply and turns negative at

the top percentile. A main reason for this might be the shape of the EDF term structure,

which becomes extremely negatively sloped. This implies that short-term (physical) default

probabilities are extremely large, relative to longer-term conditional probabilities. There

are other interesting patterns that emerge from this table. Leverage spikes over 50% at

the far-right tail and investment growth also turns steeply negative, as firms seem to begin

dis-investing when they are this close to default.

We summarize the tail behavior of short and long-term credit spreads, as a function of

firm-level ex-ante risk, in Figure 3. In the top panel we plot average 1Y and 5Y spreads as

a function of cross-sectional tail percentage. Naturally, the higher a firm resides in its risk

distribution the higher the average spread would be. What is more interesting, however, is

that while the 1Y credit spread is consistently below the 5Y maturity, at a certain threshold

it overtakes it. This is when the slope becomes negative and is consistent with data from

the previous Table.

In the bottom subplot we show that in negative economic states (i.e., recessions) this

switching slope dynamic is more severe and takes place for a larger chunk of firms. The solid

blue line in this panel represents the difference between the two lines in the above panel.

As one can see it is consistently positive until a threshold point. We examine this slope

particularly in recessions (dot-marked, green line) and it is evident that it flips for a larger

chunk of firms, close to 5%. This point takes place much earlier, especially when compared

to positive states.

2.3 Cyclicality of Credit Spreads

Naturally, we would expect fundamental default risk to rise in adverse economic states,

as firms get closer to default (a lower distance to default) and continue to experience a

combination of negative cash flow and funding shocks. It can also be the case that for the

same level of default risk, financial investors are more risk averse in adverse states. This

form of counter-cyclical risk aversion can result in higher credit risk premia (e.g., Berndt

et al. (2018)), which raises the overall credit spread. Such risk aversion plays a crucial role

in modern asset pricing models (e.g., Chen (2010); Bansal and Yaron (2004)).
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2.3.1 Full Sample

To test the degree of cyclicality in our credit spread panel, we examine regressions of the

form:

sm ′
it = βMMt + βXX

m
i,t−1 + εit (1)

where smit is firm i’s CDS spread at time t for maturity m and Mt is one of many possible

aggregate risk measures. Meanwhile Xi,t−1 is a set of lagged controls that can include in-

dustry or firm fixed effects, or time-varying Compustat controls. We use a lagged version of

these controls, as done in Chen et al. (2021), so that our measurement of βM accounts for

underlying, historical firm risks. The regressions are performed using monthly data. CDS

values are taken from the end of the month, while the last known Compustat quarterly values

are taken as of month end.

Our baseline results are presented in Table 4. From top to bottom, each panel provides

results with respect to a different aggregate risk indicator (industrial production growth,

nonfarm payroll employment growth, average VIX, and S&P market returns). All risk

indicators are measured at a quarterly level (e.g., quarterly growth rates, averages, and

returns) as we want to make sure that they properly capture lower-frequency movements in

aggregate conditions. Going left to right within a panel, columns 1 – 3 account for industry

fixed effects, columns 4 – 6 account for firm fixed effects, while the last 3 columns employ

both fixed effects and Compustat controls from the second panel of Table 2.

If we focus our attention on columns 1 – 3 of the first panel, the interpretation is that

a 1-σ movement in industry production growth is associated with a -.50%, -.44%, and -

.37% movement in 1Y, 5Y, and 10Y CDS spreads respectively. These negative coefficients

are statistically significant at the 1% level and in line with our economic intuition. This

downward sloping, absolute sensitivity to aggregate risk consistently holds across all 4 risk

indicators. For example, with the quarterly average of VIX, the sensitivities range from .92

to .63. When we include different controls such as firm fixed effects and Compustat controls,

we continue to see these patterns.

The most surprising part of these findings is that longer term spreads are less sensitive

to macroeconomic risk. In particular, Giesecke, Longstaff, Schaefer, and Strebulaev (2011)

discuss the idea (using a long sample) that corporate defaults tend to cluster, and that

adverse macroeconomic news (both real and financial market data) coincide with credit risk.

Furthermore Berndt et al. (2018) suggest of an aggregate component in credit risk premiums.

Combining both of these, we would expect that the upward sloping term structure of CDS

would coincide with an increasing sensitivity to aggregate risk. To get a better sense as to
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where these empirical patterns arise from we look at finer cuts of the data.

2.3.2 Conditioning on Risk Group and Economic States

To get at the types of firms that are driving these results we separate firms based on ex-

ante credit risk, like the summary statistics in Table 2. Using each grouped set of firms

across time, we run similar regressions as earlier. Table 5 displays the results to these tests.

Taking the first panel, we see the coefficients monotonically increase in absolute size from

left (lowest risk group) to right (highest risk group). This makes sense – credit spreads and

CDS are highly right skewed and firms that post higher ex-ante spreads are those that will

be more sensitive to aggregate shocks (such as monetary policy). For the 1Y CDS contract,

for example, the coefficient rises from -.02 to -.08 to -1.26%. Meanwhile for the 5Y swap,

the loading goes from -.02 to -.09 to -1.00%. Clearly, short-term credit spreads are more

counter cyclical than long-term ones, and the effects are concentrated in the riskiest set of

firms. Similar results hold when we examine other risk indicators (see panels 2 through 4).

In particular, results on VIX and market returns are quite pronounced as 1Y spreads are

economically and statistically sensitive to aggregate risk drivers at a rate that is greater than

longer maturities.

We add to this discussion by examining the type of economic states (booms vs. recessions)

where these sensitivities are their largest. We continue to break up firms by their ex-ante

risk group and condition on recession states (i.e., when industrial production growth is at a

relative low). Table 6 displays the results of these specifications. In these tests we squarely

focus on industrial production growth as the risk indicator. The top panel, which examines

the overall cyclicality, displays identical results to those in the previous table. The middle

panel focuses on adverse economic states and there are two conclusions that can be drawn.

First, the average absolute level of sensitivities is higher for group 5 and group 3 firms.

Second, for group 5, the absolute difference between 1Y and 5Y (10Y) grows substantially to

roughly 39 b.p. (57 b.p.). In the unconditional results, group 5 displayed absolute differences

in sensitivities of 26 b.p (43 b.p.) across maturities. These differences are important to note

as they reflect the idea that not only are short-term credit spreads sensitive to recessions,

but in recessions, further bad news can particularly harm shorter-term funding conditions.

We also show, in the final panel that such effects are muted in non-recession periods. In

Table 7 we show that the above effects are not only particular to industrial production

growth as a risk indicator. When we examine nonfarm payroll growth or S&P returns as

aggregate variables, we continue to see that in recession states these maturity-specific credit

risk patterns emerge.9

9Similar results hold for VIX as well, but they are not displayed due to space constraints. They are
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2.3.3 CDS Liquidity Effects

As with any financial market data, the lack of transaction volume and security liquidity can

reduce the degree to which prices reflect fundamentals. The same applies in CDS markets as

well, where trading positions have declined tremendously over the last 12 years. In particular,

the reduction of gross notional positions in single-name CDS has driven the overall decline in

CDS trading (e.g., Boyarchenko, Costello, and Shachar (2020)). As we exclusively use single

name CDS in our analysis, this issue is potentially problematic for us if the most illiquid

securities drive our results.

To address these issues, we focus our attention on a particular indicator – the count

of broker dealer quotes for the 5Y CDS (“Composite Depth”), which combine to form the

average CDS price we view in our data set. The intuition behind this measure is straightfor-

ward. As the number of quotes grow for a particular contract, this might be suggestive of a

more liquid market, as a larger number of dealers are willing to transact with counterparties.

Further, the number of dealer quotes are provided for each firm, at each point in time, which

allows us to perform a detailed analysis in the cross-section of CDS market depth.

Figure 4 displays the distribution of CDS liquidity over time. For the purposes of the

figure, we compute the median, 10%, and 90% quantiles, and display three month rolling

averages of these values over time. A few patterns stick out from the figure. While the

earlier mentioned notional sizes have declined over time, it is not clear that the number of

participating dealers has. In fact, in recent times (post 2016) it seems that the distribution

of CDS quotes has shifted upwards. Furthermore, the number of quotes for larger firms, as

given through the median of the matched CDS-Compustat sample is almost always greater

than the full sample median. This result is intuitive as we would expect greater participation

in the larger, more well-known issues.

We analyze whether liquidity affects our cross-sectional cyclicality results by conducting

our earlier regressions as a function of the number of dealer quotes. Table 8 provides the

results of these tests, where the middle and bottom panels condition on the number of quotes

provided. Focusing on the fifth risk group, it is clear that the most liquid CDS contracts

actually make our empirical specification even stronger. At the 1Y horizon, for example,

a baseline sensitivity of -1.26 increases in absolute value to -1.50 if we condition on the

most liquid. Moreover, it does not seem that illiquid observations are driving our cyclicality

results; if anything, it goes the other way.10

available upon request.
10The aforementioned table also shows that when we place additional liquidity constraints, the number

of high risky securities substantially decreases, relative to safer securities. While not the focus here, this
suggests that CDS risk and liquidity, proxied for by market depth, are negatively correlated.

12



2.4 Term Structure of Expected Losses and Risk Premia

Fundamentally, credit spreads can be decomposed into two sources: (1) compensation due

to expected losses in default and (2) a risk premium residual that accounts for co-variation

between the stochastic discount factor and losses in default. In this sub-section we examine

patterns in expected losses and credit risk premia across the term structure and further

study the sources of our cyclicality results.

To decompose CDS spreads into these two components we follow the methodology in

Berndt et al. (2018), which we describe briefly here. The CDS spread at a given maturity is

the annualized rate Ct, such that:

K∑−1 [ ] K−1 [ ]
Mt+(k+1)∆

∑ Mt+(k+1)∆
∆C E (1−Dt,k = Et t ∆) t Lt+k∆,∆Dt+k∆,∆ (2)

Mt Mt
k=0 k=0

where the left-hand side reflects premium payments conditional on non-default of the firm,

and the right-hand side the potential protection against losses in default. ∆ is the period of

repayment in years and K is the total number of periods. Dt,y indicates a default indicator

of default occurs between t and t + y. Similarly, Lt,y indicates losses in default if it occurs

between t and t+ y. Finally, Mk is the cumulative discount factor from t to k.

11

Under three assumptions (risk neutrality of time discount rates, conditional independence

of recovery rates from realized default, and martingale nature of recovery rates), we can

transform the above equation to receive:∑
L K−1

Et
EL = ∑ k=0 dt,(k+1)∆ t [Dt+k∆,∆]

t
∆ K−1

k=0 d Et,(k+1)∆ t [1−Dt,k∆]

where ELt is the expected loss component and dt,k∆ is the time t discount rate of a cash

flow at t + k∆. Note that the implied expected loss component depends on three pieces

of data: (1) zero-coupon bond yields, (2) expected default probabilities, and (3) recovery

rates which imply a loss rate. For the first item we use estimates from Gurk¨ aynak, Sack,

and Wright (2007). For the second we calibrate a Nelson-Siegel-Svensson model of default

probabilities using a term structure of Moody’s EDF data for each firm-date and apply it

to the horizon of choice. For the third item, we take recovery values from the Markit

database. After computing the expected loss component, ELt from the formula above, the

credit risk premium is defined as CRPm = sm − ELm
it it it . Inherent in this expression is that

12

11As premium payments are generally quarterly, for a 5-year CDS contract, ∆ = .25 and K = 20.
12We use an identical procedure as that in Berndt et al. (2018) to estimate default curves for each firm-date.

For more details see their paper and Appendix.
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the decomposition is firm, time, and maturity specific.

Figure 5 displays the cross-sectional median of this split, at each part of the term structure

(1Y, 5Y, and 10Y). A few patterns are evident. First, at the 1Y horizon, the expected loss

component makes up a larger proportion of the total CDS level. Meanwhile at the 5Y

and 10Y horizon, this proportion shrinks. Second, variation in credit spreads are much

less explained by expected losses at the longer horizons. This is evidenced by the relative

smoothness of the expected loss components at longer horizons.

We can numerically confirm these observations and examine tail behavior in Table 9.

Similar to earlier we zoom in on firms that are particularly risky and examine the decom-

position of their spreads and the slope of their CDS curves. Focusing on the last panel of

the table, it is clear that the riskiest of firms display a negatively sloped term structure of

expected losses. This is precisely where the negative slope of overall CDS comes from. These

results are intuitive from the standpoint that the expected loss component relates more to

the physical probability of default. To the extent that these risky firms are more likely to

immediately default, this negative slope is consistent.

Finally, we replicate our cyclicality analysis, within each sub-component of credit spread

data. In Table 10 the middle and bottom panels examine the following two regression

specifications, respectively:

ELm = β ∆IP + β′ X + εmit IP t X it it

CRPm = γ ∆IP + γ′ m
it IP t XXit + ηit

Focusing on the first three columns (“Overall”), we see that the degree of countercyclicality

at the 1Y horizon, is relatively evenly split between expected losses and risk premia (-.15 vs.

-.13). Meanwhile at longer horizons we see that risk premia are much more countercyclical

(-.03 vs. -.18). Naturally, these results are driven by the riskiest of firms (“Risk Group 5”),

where the even split of cyclicality is again seen at the 1Y horizon. The asymmetric split is

very clearly present at the 5Y and 10Y horizons, as well.

2.5 Credit Risk Dynamics from March 2020

To provide a clear example of the dynamics we observe in the full sample, we focus on

evidence from the COVID-related turbulence that took effect in US financial markets, during

the first quarter of 2020. As this was a time period where financial markets were becoming

increasingly stressed, and certain types of firms were disproportionately hurt (e.g., firms in

the travel, retail, and energy sectors), it serves as a laboratory to study our broad sample

findings.
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Using the CDS data alone, we start by sorting firms by their 2019 year-end average

spread values, where the values are defined by the average of firm-specific CDS values across

maturity – 1×(CDS1Y + CDS5Y + CDS10Y ). After conducting these sorts, we examine two
3

variables: (1) the shift in levels of the CDS from December 2019 to March 2020 and (2) the

shift in slope between the two dates. In order to minimize the relaxing effects of US monetary

policy that might take away from our use of the time period, we use data as of March 20,

shortly prior to the March 23 announcement by the Federal Reserve that announced plans

to create a secondary market corporate credit facility. We present our results in Figure 6.

The bottom axis of both figures indicates statistics that relate to the riskiest percentage of

firms.

From the top figure, we can see that there was an expected positive shift in spread levels,

from December 2019 to March 2020, as firm-level credit risk increased. The shift in levels

was most significant for the riskiest of firms – a finding that is relatively unsurprising given

the convex surface of firm credit risk. Perhaps more interesting is the bottom chart, which

displays that the slope shrank across the distribution, but reduced into negative territory

for some of the riskiest firms. While these very firms had displayed a positive slope of the

term structure prior to the crisis, the change in dynamic is stark and serves as validation

to the larger sample effects we presented earlier. We should also mention that the firms

in the bottom 10%, which display a negative slope, include firms that would certainly face

challenges in a COVID environment. Notable examples include Neiman Marcus, Chesapeake

Energy, Frontier Communications, and J.C. Penney.13

2.6 Summary

In this section, we show evidence that as firms get particularly close to default, the slope

of their credit spread curve switches signs. Furthermore, credit spreads at the shorter end

of the curve are more sensitive to adverse economic news and these results are driven by

the riskiest firms particularly in negative states of the world. More generally, the dynamics

we examine here are reflective of broader concepts of self-fulfilling rollover risk. While the

credit default swap contracts are not necessarily reflective of bonds of these exact maturities

(i.e., the insurance-related spreads on debt with exactly these maturities), they do convey

the market pricing of credit risk. As a result, their prices tell a story consistent with weaker

firms getting priced out in short-term markets in crisis episodes. For example, if these firms

approached short-term investors to gain access to fresh capital, the efficient pricing of credit

risk and default probabilities would likely make short-term debt very costly to obtain. Of

13The cross section of credit default swaps that we examine over the period includes 473 firms which
suggests that the roughly 10% that display an average negative slope (∼ 47 firms) is a sizable number.
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course, these firms would also face greater costs for longer debt maturities as well, however

the issues are the most acute and pressing at shorter horizons. This type of story and

interpretation will be important as we draw parallels to the dynamic model of firm behavior

in the next section.

3 Model

3.1 Technology

Firms use capital k to produce output y according to the following production function:

y = Zkα − ψ. (3)

The production function has decreasing returns with parameter α ∈ [0, 1]. ψ is a fixed cost

of production. Z is an aggregate productivity process that evolves according to

lnZ = (1− ρZ)µZ + ρZ lnZ−1 + η (4)

where ρZ is the persistence of the productivity process. The innovations η are normally

distributed with mean zero and volatility σZ . µZ is the unconditional mean of the log

productivity process, which we set to µZ = −1(σZ)2 to ensure that Z has an unconditional
2

mean of one.

Capital evolves according to the law of motion

k′ = (1− δ)(1 + ε)k + i, (5)

where δ is the rate of depreciation and i is investment. ε ∼ N(0, σε) is a firm-specific

capital quality shock that shifts the capital stock of the firm. Such a capital quality shock is

standard in the literature (e.g., Jungherr and Schott (2020), Ottonello and Winberry (2020)).

It represents factors that we do not explicitly model that vary the value of capital. Examples

are machines becoming obsolete or breaking down. We include the capital quality shock as

it helps the model to generate realistic default rates.

Cash flows are discounted with a stochastic discount factor (SDF). Following Zhang

(2005) and Jones and Tuzel (2013), we directly parametrize the SDF as a function of the
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aggregate state according to

lnM(Z,Z ′ [
) = ln β − Γ(Z) lnZ ′ ] 2

− (1− ρZ
Γ(

)µZ − ρZ
Z)

lnZ − (σZ)2 (6)
2

Γ(Z) = γ0 + γ1 lnZ. (7)

γ0 > 0 is associated with the risk aversion of the representative investor. γ1 governs the

sensitivity of the risk aversion to the business cycle. γ1 < 0 implies that risk aversion is higher

if productivity today is low, i.e. in recession states. This SDF has the intuitive explanation

that states in which productivity growth is positive are discounted more than states in

which productivity growth is negative. Moreover, discounting is stronger if productivity is

low today. This yields a counter-cyclical Sharpe ratio, which is in line with the data (e.g.

Lustig and Verdelhan (2012)). Finally, we subtract the term Γ(Z)2 (σZ)2 to ensure that the
2

stochastic discount factor has a constant expected mean, which leads to a constant risk-free

rate. This allows us to abstract from modelling time-variation in risk-free coupon rates and

helps to focus the model on the default risk premiums that are the main focus of our analysis.

3.2 Financing

3.2.1 Debt Financing

Firms can issue short-term debt, bS, and long-term debt, bL, at state-contingent prices QS

and QL on competitive bond markets. Short-term debt is a one period contract: if a firm

issues one unit of short-term debt today, it needs to repay 1 + c in the next period, where

c is a coupon rate. We model long-term debt following Leland (1994), Hackbarth, Miao,

and Morellec (2006) and Kuehn and Schmid (2014) as a recursive contract with maturity

1/µ: if a firm issues one unit of long-term debt today, it needs to repay µ + c in the next

period, while 1 − µ is rolled over at the next period’s market price Q′
L. The stock of the

firm’s long-term debt evolves according to

b′L = (1− µ)bL + jL, (8)

where jL is long-term debt issuance. When issuing debt, firms have to pay linear debt

issuance costs ξS and ξL, respectively. These debt issuance costs reflect, for example, inter-

mediation fees.
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3.2.2 Equity Financing

Income is taxed with corporate income tax τ . Income net of taxes is defined as

ỹ = (1− τ)(ZKα − c(bS + bL)− δ(1 + ε)k − ψ). (9)

That is, there is a tax deduction for both depreciation and interest expenses. The net worth

of the firm is given by

n = ỹ + (1 + ε)k − bS − µbL. (10)

The equity payout e of the firm is defined residually by the firm’s budget constraint:

e = n− k′

+ [QL − ξ ′ ′
L1(bL > (1− µ)bL)] [bL − (1− µ)bL]

+ [QS − ξS1(b
′ ′
S > 0)] bS. (11)

If firms issue equity, that is, e < 0, they have to pay a linear equity issuance cost. In

conjunction with the debt issuance cost, this equity issuance cost creates a wedge between

the value of internal and external financing. The total payout to shareholders d, which

includes the equity issuance cost, is thus given by

d = e [1 + ϕ1(e ≤ 0)] . (12)

3.2.3 Default

Firms can default on their outstanding debt. This takes place when the (market) value of the

firm reaches 0. In default, the firm is liquidated, shareholders receive nothing, and creditors

receive the liquidation proceeds of the firm, which are given by

n∗ = χ(Z) [(1− τ) [Zkα − δ(1 + ε)k − ψ] + (1 + ε)k] . (13)

A fraction 1 − χ(Z) of the firm’s assets is destroyed in default. Following Chen (2010), we

allow the recovery parameter to co-move with the aggregate state, according to

χ(Z) = χ + χ lnZ + χ /2(lnZ)20 1 2 . (14)

We assume that χ1 > 0 and χ2 < 0, such that the recovery parameter is increasing and con-

cave in the aggregate state. Pro-cyclical recovery rates reflect for example fire sale discounts
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that tend to rise asymmetrically during recessions.

Note that, consistent with the US tax code, there is no deductibility of interest expenses

in the case of default. There is a cross-default clause, so firms cannot default selectively on

either only short-term debt or long-term debt. Moreover, there is a pari-passu clause, so

owners of short-term debt and long-term debt receive equal shares of the firms liquidation

proceeds. The recovery rate of the creditors is given by

n∗
r = . (15)

bS + bL

As will be defined shortly, the market value of the firm at any point in time will be given( )
by v n, bL, Z . It is possible to show that the optimal default policy of the firm is defined

by a cutoff for the idiosyncratic capital quality shock ε, which is implicitly defined by

[ ]
0 = v((1− τ) Zkα − δ(1 + ε)k − cb− ψ + (1 + ε)k − bS − µbL, bL, Z). (16)

Put differently, this will be the shock ε at which the owners of the firm will be indifferent

between continuing to operate or to default and walk away.

3.3 Equity financing constraint

One difficulty in a model with defaultable long-term debt and positive recovery rates is that

firms that are very close to default might want to “gamble for resurrection”. In such a

situation, firms might find it optimal to choose low levels of capital and high levels of debt,

k′ = k and b′ = b. Under this corner solution, the firm will naturally have a high equity

payout today and default in the next period. This corner solution is undesirable for two

reasons: first, it implies empirically unrealistic behavior. Second, it can create convergence

issues in the quantitative solution of the model if the solution algorithm jumps back and

forth between the interior solution and the corner solution.

To eliminate the corner solution, we follow Jungherr and Schott (2021) and impose a

constraint on equity financing. We add a constraint such that the continuation value of the

firm to shareholders must be at least as high as a fraction κ of the end of period capital

stock:

v(n, bL, Z)− d ≥ κk′. (17)

This constraint can be motivated by a simple moral hazard problem (e.g., Gertler and

Kiyotaki (2011)): suppose that the shareholders of the firm can run away with a fraction κ

of the capital stock of the firm. To ensure that this will not happen in equilibrium, creditors

can impose an incentive compatibility constraint that states that the value to shareholders
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of continuing to operate the firm must be at least as high as the gain from diverting assets.

This incentive constraint thus takes the form of equation 17. In simulations of the model,

the incentive constraint is almost never binding or close to binding.

3.4 Bond prices

Both bond prices, short and long, are determined by a break-even condition such that total

current proceeds to the firm equal the total expected payment to intermediaries in the future.

The short-term bond price is given by [ ]∫ ∞ ∫ ∞ ∫ ε

QS(k
′, b′L, b

′
S, Z) = M(Z,Z ′) (1 + c) dG(ε) + r′dG(ε) dF (Z ′). (18)

−∞ ε −∞

That is, it will be the expectation of cash flows to creditors in non-default states, 1 + c,

and default states, r, where the expectations are taken over the idiosyncratic capital quality

shock and the aggregate productivity shock. Future cash flows are discounted with the

stochastic discount factor. The bond price depends on the decisions of the firm through the

endogenous default policy ε of the firm and the firm’s recovery value r′.

The long-term bond price is given by[∫ ∞ ∫ ∞
QL(k

′, b′L, b
′
S, Z) = M(Z,Z ′) (µ+ c+ (1− µ)QL(k

′′, b′′ , b′′ ′
L S, Z )) dG(ε)

−∞ ∫ε ε ]
+ r′dG(ε) dF (Z ′). (19)

−∞

Like the short-term bond price, the long-term bond price is the expectation of the cash flows

to creditors in non-default states, µ + c + (1 − µ)QL(k
′′, b′′L, b

′′
S, Z

′), and default states, r′.

Differently to short-term debt, the long-term bond price depends on the future long-term

bond price, which in turn depends on future firm policies.

As in Kuehn and Schmid (2014), we compute quarterly credit spreads in the model as:

µ+ c µ+ c−
QL(k′, b′

(20)
L, b

′
S, Z) Q R

L(Z) F

for long-term debt and
1 + c 1 + c− (21)

QS(k′, b′ , b′L S, Z) QS(Z)RF

for short-term debt. In the above equations, QS(Z)
RF and QL(Z)

RF are risk free prices of

short and long debt that pay off 1 + c next period and µ + c into perpetuity, respectively.
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Credit spreads are computed for those firms that actually do issue debt (defaulting firms are

removed).

3.5 Firm problem

The firm’s problem has three state variables: the net worth of the firm, n, its level of

outstanding long-term debt bL and the state of aggregate productivity Z. Firms maximize

shareholder value { }∫ ∞ ∫ ∞
v(n, b , Z) = max d+ M(Z,Z ′) v(n′, b′ , Z ′

L L )dG(ε)dF (Z ′) , (22)
k′,b′ ,b′ ,e,εL S 0 ε

subject to dividend payouts 12, the budget constraint 11, the definition of net worth 10, laws

of motion for the aggregate state 4, capital 5 and debt 8 and the equity financing constraint

17. They take the stochastic discount factor defined in equations 6 and 7, as well as the

bond prices 18 and 19 as given.

Rewriting the budget constraint yields, in case of long-term debt issuance:

k′ = n−
1 + ϕ1(d ≤ 0)︸ ︷︷ ︸

equity financing

+ [QL(k
′, b′L, b

′
S, Z)− ξL1(b

′
L > (1− µ)bL)] [b

′
L − (1− µ)bL]︸ ︷︷ ︸

long-term debt financing

+ [QS(k
′, b′ , b′ , Z)− ξ 1(b′ > 0)] b′ (23)︸ L S ︷︷ S S S︸

short-term debt financing

d

This implies that firms can finance their capital stock with either equity, short-term debt

or long-term debt. The cost of equity financing are equity issuance costs, if the firm has

insufficient internal funds. The costs of debt financing are debt issuance costs and endogenous

default premiums.

4 Quantitative Results

4.1 Calibration

As the model has no closed-form solution, we resort to numerical methods to solve the model

and employ techniques similar to those in Hatchondo, Martinez, and Sosa-Padilla (2016).

We treat the investment, debt and debt maturity choices as continuous choices instead of

21



discretizing them on a grid. Similarly, we treat the idiosyncratic shock as continuous. We

discretize the aggregate state using a five-state Markov chain. To calibrate key parameters,

we divide the model’s parameters into two groups. The first group of parameters is calibrated

to external targets, while the second group is calibrated internally to match moments from

model simulations to cross-sectional moments from Compustat. The frequency of the model’s

calibration is quarterly.

Panel 11a of Table 11 displays the externally calibrated parameters. We set the depre-

ciation rate δ to match the average depreciation rate in Compustat. We set the returns to

scale of the production function α to a value of 0.65, following Cooper and Ejarque (2003)

and Hennessy and Whited (2007). The corporate tax rate τ is set to 0.35, which is the

corporate tax rate over most of the sample period. The persistence ρZ and volatility σZ of

the aggregate shock are set to 0.95 and 0.007, respectively, following Cooley and Prescott

(1995) and Zhang (2005). We set β to target a risk-free rate of 4 percent. The maturity

of long-term debt µ is set to 0.05, implying that the average maturity of long-term debt is
1 = 20 quarters or 5 years.
µ

Panel 11b of Table 11 displays the internally calibrated parameters. The parameters of

the stochastic discount factor γ0 and γ1 are set to match a Sharpe ratio of 0.2 as well as an

equity premium of 6 percent. We choose the equity issuance cost ϕ to measure a quarterly

frequency of equity issuance of 5 percent. We choose the debt issuance costs ξS and ξL to

match a frequency of long-term debt issuance of around 30 percent and a long-term debt

share of around 90 percent. The fixed cost ψ and the volatility of the firm-specific capital

quality shock σε are set to match a default rate of one percent per year and a leverage of

around 30 percent. Finally, the parameters of the recovery in default χ0, χ1 and χ2 are set

to target a recovery rate of 40 percent, a volatility of the recovery rate of 8 percent and a

correlation of the recovery rate with the default rate of -0.8, in line with Chen (2010).

Panel 11c of Table 11 shows the model fit in terms of the targeted moments. Overall, the

model, while highly non-linear, can match the calibration targets reasonably well. Firms

issue equity in around 6 percent of quarters and debt in around 30 percent of quarters,

similar to the data. Firms have leverage ratios of 28.5 and a long-term debt share of 97

percent. The default rate is around 126 basis points per annum and the recovery rate is

51 percent. The model’s performance regarding the volatility of the recovery rate and its

correlation with the default rate, as well as regarding the equity risk premium can still be

improved. Given the endogenous default intensities and recovery rates of the model, the

counter-cyclical stochastic discount factor helps to amplify risk in the model. This intuition

is in line with much of the asset pricing literature.

14

14The current calibration is preliminary, and the model fit can still be improved.
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4.2 Model Moments and Behavior

4.2.1 Cross-sectional and Business Cycle Moments

To further evaluate the model fit, we use model simulations. We simulate a panel of 1000

firms for 2000 periods, discarding the first 1000 periods, and then compute cross-sectional

moments from the simulated data. Table 12 displays the results. The model does a good job

at replicating key cross-sectional moments of firms’ real and financial policies in Compustat

data. Notably, the model replicates both the (targeted) level and the (untargeted) volatility

of the leverage and long-term debt share in the data well. The model also generates

realistic ratios for un-targeted ratios like the investment/capital ratio, debt issuance/capital

ratio and the equity issuance/capital ratio. The model also produces empirically plausible

cross-sectional standard deviations for these variables. In particular, the cross-sectional

standard deviation on investment / capital is relatively low considering we do not use capital

adjustment costs, which are popular in the literature (e.g., Zhang (2005)). Finally, we test

the model’s cross-sectional predictions for leverage by running a leverage regression, where

we regress leverage on the firm’s size, market-to-book ratio and profitability. As in the data,

market-to-book and profitability are negatively related to leverage. The coefficient of size in

the data is small and insignificant, while it is slightly negative in the data.

15

Table 13 shows the ability of the model to match cyclicalities of average variables in

the cross section. While the model is highly stylized and only contains few frictions, it

produces empirically plausible aggregate movements, in both quantities and prices. The

model generates pro-cyclical investment and debt maturity. While not reported here, the

pro-cyclical debt maturity is driven by greater long-term debt issuance in positive aggregate

states, and greater short-term debt issuance in adverse states of the world. Finally, the

model generates counter-cyclical default rates and credit spreads, as to be expected.

4.2.2 Firm Policies

To better understand the behavior of the model across the state space, we take our model

simulations and examine the average values of key policy variables, within buckets of the

state space. Figure 7 displays the policies of firms as a function of their net worth and their

outstanding long-term debt. Each bucket in an individual panel reflects the behavior of firms

within a 5% interval of long-term debt, crossed with a 5% interval of net worth. Meanwhile

as colors range from blue to yellow, this reflects a gradient shift of a low outcome into a high

15As the firms we look at in our merged data set are some of the largest in the Compustat universe, it
turns out that leverage rates and long-term debt shares (in the data) are even larger relative to what is
commonly quoted.
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outcome.

The top row shows firms’ debt and equity financing policies: this shows clearly that the

firm’s policy is characterized by two inaction regions: in the dimension of net worth, high

net worth firms pay dividends, firms with intermediate net worth retain all earnings and

firms with low net worth issue additional equity. In the dimension of long-term debt, firms

with low leverage issue additional debt, firms with intermediate leverage do not adjust their

leverage and firms with high leverage either repurchase debt or default, depending on their

net worth.

The second row takes a closer look at the realized short-term debt and long-term debt

financing decisions of firms: it shows the revenue from short-term debt issuance and long-

term debt issuance. Due to debt issuance costs, firms generally prefer long-term debt issuance

to short-term debt issuance, but substitute to short-term debt financing in two cases: first,

when the cost of long-term debt financing is very high and second (to a lesser degree), when

they are relatively unlevered. Short-term debt serves as bridge financing: firms issue short-

term debt, when long-term debt is relatively expensive for them. They roll over short-term

debt into long-term debt if they experience a sequence of positive shocks. If they experience

a sequence of negative shocks, short-term debt allows them to commit do deleverage swiftly.

The third row of Figure 7 shows the firms’ credit spreads as a function of net worth

and outstanding long-term debt. Credit spreads are highly non-linear: firms with lower net

worth and higher long-term debt face larger credit spreads. Put differently, there is a clear

interaction effect between net worth and long-term debt. It is also clear from the second

figure in the row that the interaction effect works both ways. Finally, the credit spreads of

long-term debt are more sensitive to the state variables of the firm than the credit spreads

of short-term debt. More generally, these charts suggest that firms are priced out of using

debt, both short-term and long-term, when they are in high-leverage, low net-worth states.

This creates endogenous roll-over risk in the model.

4.3 The Distribution of Credit Spreads: Model vs Data

4.3.1 Unconditional Moments

How well does the model replicate the distribution of credit spreads? Table 14 shows the

implication of the model for credit spread moments. Panel 14a displays unconditional mo-

ments. The model succeeds in producing an unconditionally upward sloping term structure

of credit spreads. As the model currently stands, the average level of the term structure is

less than what is in the data. At the short and long horizons, model spreads are 42 and 51

basis points versus 144 and 222 basis points in the data. While these are low, some of the
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issues arise from the calibration of the SDF and the lack of capital adjustment costs. As

discussed in Kuehn and Schmid (2014), properly accounting for both of these has a signifi-

cant effect on model dynamics. For example, capital adjustment costs to capital can create

greater risks to the downside that are priced into credit spreads, as firms lose the ability to

disinvest in recessions and gain access to cash.16

Two areas where the model does well are related to the counter-cyclicality of credit

spreads and the tail risks of short term vs. long-term spreads. In the middle and bottom

panels of Table 14 we show that positive states from the simulation (the top 2 out of 5 ag-

gregate states) reflect lower spreads across the distribution, on average. Meanwhile negative

states (the bottom 2 out of 5 aggregate states) reflect higher spreads. The slope of the term

structure of credit spreads in the model is higher in booms than in recessions, as in the data:

unconditionally, the slope is 9 basis points, in booms, it rises to 15 basis points, while in

recessions, it falls to 6 basis points.

Finally, we show through model simulations that the skewness and kurtosis of short-term

spreads are both larger than those of long-term values, regardless of state. These patterns

are qualitatively consistent with the data and they will be directly reflective of the empirical

findings we discussed in Section 2, as discussed below.

4.3.2 Credit Spread Dynamics

In the empirical section, we document two stylized facts related to the dynamics of short-

and long-term spreads. As firms get increasingly close to default and display greater risk,

the slope of their credit spread term structure diminishes dramatically and sometimes turns

negative. Further, the cyclicality of shorter-term credit spreads becomes increasingly nega-

tive, especially when compared to that of long-term spreads. In our eyes, the success of the

model mainly hinges on matching these qualitative patterns, and we explore those dynamics

here.

In Figure 8, we replicate similar charts as those in Figure 3, using model simulated values.

The bottom axis in all the figures refers to quantiles of the distance to default. There are 20

quantiles that separate groups of firms. Meanwhile the vertical axis relates to the realized

credit spread. Across all figures, the one quarter credit spread is depicted as a solid line,

while the five-year credit spread is depicted as a dashed line. Credit spreads during recessions

are depicted in red, credit spreads during booms in blue.

The top panel 8a displays the levels of credit spreads. Credit spreads in recessions (red)

are above credits spreads in booms (blue). Moreover, short-term credit spreads are mostly

16While not discussed here, we are currently implementing adjustment costs to capital and a subsequent
version of the model will embed these.
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information insensitive as the red and blue solid lines are on top of one another for a large

portion of the firm distribution. Meanwhile the dashed lines reflect a slight premium for

long-term debt in recessions, regardless of which quantile firms are in. For very risky firms

however, where short-term debt is very sensitive to information, the lower maturity credit

spreads jump dramatically. This jump is much larger in absolute size than the same difference

for longer maturity debt. For example, the 5% riskiest of firms display a jump in short term

spreads from 1.5 to 8.5%. Meanwhile these very same firms display a jump in long-term

spreads from 1 to 2%. These firms are pushed close to default due to a sequence of negative,

transitory idiosyncratic shocks. As firms’ endogenous accumulation of net worth leads to

endogenous mean reversion, the firms’ short-run default probabilities are higher than the

firms’ long-run default probabilities, which is reflected in the inversion of the credit risk

term structure.

The bottom panel 8b displays the slope of the term structure of credit spreads. For most

distance to default quantiles, firms display a positively sloped credit spread curve. However,

as we move towards the most financially constrained firms (lowest distance to default), we

see that the slope flips sign. Furthermore, this sign flip takes place for a larger proportion

of firms in recessions, as opposed to booms. This is consistent with the data.

To display the differential sensitivites of the spreads more directly by maturity, Table 15

revisits the panel regressions of Tables 4 and 5 in the model. We simulate a panel of firms,

compute the credit spreads of each firm and then regress the credit spreads on the business

cycle state. Panel 15a shows the results of the pooled panel regressions. Unconditionally,

the cyclicality of the long-term credit spread is roughly equal to the cyclicality of the short-

term credit spread. Panels 15b to 15d revisit the regressions by risk group. In the model,

we measure risk by the equity value of the firm, though other measures would yield similar

results. Consistent with the data, riskier firms have more cyclically sensitive credit spreads.

Moreover, while the cyclicality of long-term credit spreads is higher than for short-term

credit spreads for low-risk firms, the cyclicality of short-term credit spreads is higher than

the one of long-term credit spreads for high-risk firms. This confirms the intuition that is

given by the earlier Figure 8.

4.3.3 Firm Policies and Distance to Default: an Event Study

Up until this point we have focused on the prices of short and long debt, across the distribu-

tion of firms and over the business cycle. Figure 9 takes a closer look at firm policies as firms

approach default. To do so, we use an event study approach. The results are also based on

model simulations, similar to prior figures. The blue line plots the average policy of a firm

that will eventually default during the 40 quarters prior to default. The dashed line is the
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unconditional mean of the respective policy.

The left panel in the first row plots the path of the exogenous capital quality shock that

leads firms to default. Typically, default is preceded by a slight deterioration in capital

quality for many periods, and then a sudden and dramatic fall in capital quality right before

default. The right panel in the first row shows the investment policy of the firm: investment

declines prior to default. Eventually investment falls below the depreciation rate, such that

firms reduce their capital stock.

Why are firms forced to sell off capital and why can’t they use alternative means of

financing (debt or equity)? Certainly, firms increasingly issue equity as they get closer to

default. Equity issuance is however very costly. Thus, marginally reducing the capital stock

to avoid having to issue equity, while creating a costly deviation from their target size, is the

less costly option for many firms. When it comes to debt issuance, very risky firms essentially

get priced out of both short and long-term markets. When examining the issuance patterns,

it is clear that firms issue short-term debt and long-term debt at intermediate distances to

default. When they get very close to default, they neither issue short-term debt nor long-

term debt. These quantity effects go hand in hand with the actual spreads across the curve

skyrocketing and the term structure of credit spreads turning strongly negative (last three

panels).

4.4 The Role of Frictions

To better understand which elements of the model are important for the level and cyclicality

of credit spreads, we now switch various parameters off one by one. The main takeaway

is that debt and equity issuance costs are essential to generate an upward-sloping term

structure of credit spreads. Table 16 reports the results. The table reports moments for

credit spreads, the default and recovery rate, leverage, the long-term debt share and the

cyclicality of credit spreads across different models. Model 1 is the baseline model.

Column 2 reports moments for a model with risk-neutral investors. Surprisingly, credit

spreads in this model decrease only slightly. This is due to the endogeneity of firm policy:

with risk-neutral investors, credit spreads fall, holding firm policies constant. This encourages

firms to use more leverage and a longer debt maturity structure. Default rates increase, and

recovery rates decrease. Column 5 removes the counter-cyclicality of risk aversion. This

leads firms to use more leverage, and more long-term debt. The intuition is similar to the

model with risk-neutral investors.

Column 3 shows moments for a model in which there are no equity issuance costs. This

leads to a large increase in short-term credit spreads, but not in long-term credit spreads.
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The removal of equity issuance costs eliminates a cost of leverage, namely that firms might

be forced to issue costly equity to repay outstanding debt if they have low internal funds.

As a consequence, firms take on much more leverage. Default rates rise, and recovery rates

fall.

The model in column 4 removes debt issuance costs. This leads firms to choose a much

shorter debt maturity structure, which reduces credit spreads and default rates. This is,

because short-term debt is not subject to a leverage ratchet effect, such that firms will

deleverage more flexibly in bad states. This additional flexibility also implies that firms can

take on more leverage. Note that this model is unable to generate an upward sloping term

structure of credit spreads. Column 6 removes debt and equity issuance costs at the same

time. The removal of debt issuance costs leads firms to use more short-term debt, and the

removal of equity issuance costs leads firms to take on more leverage. In this model, the

term structure of credit spreads becomes strongly downward-sloping.

Finally, the last column reduces the value of the equity financing constraint. This leads

some firms to dilute debt and then default, which pushes up credit spreads and default rates

substantially. As creditors price this behavior, the leverage capacity of firms falls. This

last model implies higher credit spreads. However, it also implies higher default rates and

lower recovery rates than in the data, and additionally it implies that firms issue substantial

quantities of debt before they default, a behavior that is not confirmed in the data. Thus,

ruling out this adverse behavior is crucial in quantitative models with defaultable long-term

debt.

5 Conclusion

In this paper, we explore the term structure of corporate credit spreads in many different ways

– slopes, time variation, cross-sectional dispersion, and sensitivities to aggregate risk. We find

in the data that on average, investors price greater risks at the long end of the curve relative

to the short end, however these risks become inverted for the most financially constrained

firms in adverse economic states. To comprehend these facts, we construct a novel economic

model with a counter-cyclical discount factor, endogenous investment, and two maturities of

debt without commitment. The credit spreads and patterns that emit from the model are

reasonable and broadly consistent with empirical data on firm-level quantities and prices.

One of the more interesting implications of the model is that financially constrained firms are

forced to dis-invest to gain additional access to cash, and this can lead to additional stress

on the path to default. From a policy perspective, the implications of such real effects are

important and further work is needed to assess the welfare effects of these real asymmetries.
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Figures

Figure 1: Term Structure of Corporate CDS (2002 – Present)
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Each panel displays median values over time with respect to a particular maturity (1Y, 5Y, or 10Y).
Within a panel, medians are computed across three samples – a Markit-only sample, a Compustat-Markit
merged sample, and a Compustat-Markit-Moody’s sample.
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Figure 2: Sample Firm Counts CDS
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This figure displays the number of firms at each point in time. The three lines refer to the Markit,
Compustat-Markit, and Compustat-Markit-Moody’s merged samples.
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Figure 3: Term Structure of Credit Spreads and Firm-Level Risk

(b) Average Slope vs. Firm Risk

In each panel, we sort firms by their 1Y CDS spread as of the month prior and examine the average value
of statistics within the riskiest X% of firms, as measured through the above CDS spread. The top panel
examines 1Y vs 5Y spreads as a function of cross-sectional risk, while the bottom panel examines the slope.
Additionally, in the bottom panel, the dashed line examines the slope in boom periods while the dotted
line in recessions. All data are winsorized at the .5% level.
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Figure 4: CDS Liquidity Over Time
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This figure displays the distribution of CDS liquidity over time, as measured by the number of broker
dealer quotes per contract. At each point in time, the median, 10%, and 90% quantiles are computed. The
blue solid line reflects the 3-month rolling average of the median count of dealer quotes, while the grey area
reflects the 3-month rolling average of the 10%-90% bounds. Finally, the orange dashed line reflects the
moving average of quotes in the CDS-Compustat sample.
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Figure 5: Expected Losses and Credit Risk Premia Over Time
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In each panel, we display the median expected loss component and credit risk premium of CDS spreads.
The expected losses and credit risk premia are computed using the methodology in Berndt et al. (2018), for
each firm across time, at varying maturities. For more details regarding variable construction see the main
text.
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Figure 6: Credit Spread Dynamics in Early 2020

(b) Average Slope vs. Firm Risk

In each panel, we sort firms by their average CDS values (across 1Y, 5Y, and 10Y spreads) as of December
2019, and examine the average value of statistics within the riskiest X% of firms. The top panel examines
the shift in average spreads from December 31, 2019 to March 20, 2020, while the bottom panel examines
the shift in slope (5Y – 1Y spread) between the two dates. If data not available for these exact days, last
available quotes are taken within 3 days prior. All data are winsorized at the 1% level.
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Figure 7: Realized Policy Choices Across the State Space
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We simulate the model for 1000 firms and 1000 quarters. Then, we sort firms into 20 quantiles according to
their rank in the net worth (n) and long-term debt (bL) distribution, and compute the mean of each
variable within each joint quantile. Colors range from blue to yellow, increasing in value of the policy.

38



Figure 8: Credit Spreads over the Business Cycle
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(b) Slope of the Term Structure

(a) Levels

Using simulated data across recession and boom states, we sort firms by their equity value (top panel)
v(n, bL, Z = z). After sorting into 20 bins we compute the average short and long-term credit spreads
within each bin.

39



Figure 9: Default Event Study

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

-0.3

-0.2

-0.1

0

(a) Capital quality shock (ϵ)

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0.01

0.02

0.03

0.04

(b) Investment

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0.02

0.04

0.06

0.08

(c) Equity issuance

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0.02

0.03

0.04

0.05

0.06

(d) LT debt issuance

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0.5

1

1.5

2
10-3

(e) ST debt issuance

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0.5

1

1.5

2

2.5

(f) LT credit spread

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

0

2

4

6

(g) ST credit spread

-40 -35 -30 -25 -20 -15 -10 -5 0

Quarters relative to default

-4

-3

-2

-1

0

(h) Credit spread slope

Using simulated data, we collect all firms that eventually default, and then plot the average of the
respective variables of these firms in the 40 quarters prior to default. The blue line is the resulting average.
The dashed, black line is the unconditional average of the respective variable.

40



Tables

Table 1: CDS Summary Statistics

Full Sample Positive States Negative States
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

Full Sample

mean 1.426 2.211 2.438 1.232 2.004 2.232 1.968 2.672 2.835
xsstddev 3.614 3.611 3.289 3.326 3.322 3.008 4.469 4.353 3.912
skew 7.828 5.360 4.644 8.077 5.700 4.870 6.327 4.696 4.190
kurt 85.564 43.102 33.088 86.353 48.472 35.949 56.186 31.681 25.572

CDS-Compustat Merged Sample

mean 1.146 1.893 2.140 1.012 1.741 1.990 1.560 2.262 2.459
xsstddev 2.857 3.036 2.805 2.577 2.782 2.565 3.611 3.675 3.341
skew 7.244 5.120 4.382 7.274 5.281 4.400 6.195 4.532 3.954
kurt 75.296 40.849 30.943 75.388 44.096 31.485 55.357 30.304 23.469

CDS-Compustat-EDF Merged Sample

mean 1.181 1.942 2.189 1.043 1.794 2.043 1.594 2.308 2.504
xsstddev 2.987 3.136 2.877 2.650 2.868 2.633 3.712 3.731 3.370
skew 6.963 5.071 4.410 6.583 4.974 4.233 6.080 4.500 3.979
kurt 68.144 39.480 30.998 60.907 38.458 28.704 54.176 30.771 24.504

This table provides cross-sectional moments of the CDS data, across different maturities and samples. For
each sample and maturity, the time series average of the cross-sectional mean, std. deviation, skewness,
and kurtosis are reported. The middle panel focuses on dates where quarterly industrial production growth
is in the top 25% of realizations. The right-most panel focuses on when industrial production growth is in
the bottom 25% of realizations. All data are winsorized at the .5% level, by maturity.
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Table 2: Summary Statistics, by Risk Group

Overall 1 2 3 4 5

Full Sample

1Y CDS Spread 1.411 0.131 0.229 0.439 1.001 5.202
5Y CDS Spread 2.208 0.366 0.641 1.129 2.229 6.633
10Y CDS Spread 2.437 0.577 0.920 1.475 2.636 6.536
5Y - 1Y Spread 0.789 0.235 0.412 0.689 1.228 1.392
Average Firm Count 482.445 96.894 96.676 96.717 96.689 96.653

CDS-Compustat Merged Sample

1Y CDS Spread 1.148 0.116 0.207 0.355 0.806 4.237
5Y CDS Spread 1.895 0.346 0.596 0.974 1.845 5.695
10Y CDS Spread 2.142 0.553 0.869 1.312 2.249 5.713
5Y - 1Y Spread 0.739 0.230 0.388 0.619 1.039 1.426
Leverage 0.331 0.280 0.287 0.309 0.345 0.433
Long-Term Debt Ratio 0.875 0.839 0.861 0.880 0.891 0.907
Log Book Assets 23.096 23.821 23.362 23.005 22.802 22.474
Log Market Equity 22.925 24.203 23.467 22.919 22.445 21.502
Market-Book Ratio 1.478 2.004 1.606 1.436 1.262 1.054
Cash-Assets Ratio 0.096 0.100 0.090 0.093 0.097 0.100
Investment Growth 0.006 0.010 0.010 0.010 0.006 -0.005
Average Firm Count 263.951 53.230 52.578 53.224 52.578 52.996

CDS-Compustat-EDF Merged Sample

1Y CDS Spread 1.184 0.126 0.207 0.373 0.823 4.352
5Y CDS Spread 1.944 0.362 0.613 1.006 1.909 5.806
10Y CDS Spread 2.192 0.574 0.898 1.351 2.327 5.796
5Y - 1Y Spread 0.753 0.234 0.405 0.633 1.086 1.419
1Y EDF 1.219 0.088 0.155 0.330 0.803 4.693
5Y EDF 1.042 0.194 0.300 0.485 0.954 3.268
10Y EDF 1.037 0.310 0.445 0.637 1.093 2.694
5Y - 1Y Spread -0.177 0.107 0.145 0.155 0.152 -1.425
Average Firm Count 201.008 40.594 40.519 39.992 40.519 40.381

This table provides cross-sectional means of the Markit CDS, Compustat, and Moody’s EDF data, across
different risk groups. For each statistic of interest and risk group, the time series average of the
cross-sectional mean is reported. The risk groups are identified by a cross-sectional sort based on lagged
average CDS values. All data are winsorized at the .5% level, by maturity.
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Table 3: Credit Spreads in the Tails of the Distribution

Overall 25

Full Sample

1Y CDS Spread 1.411 4.428 8.168 12.101 19.183 25.073
5Y CDS Spread 2.208 5.870 9.437 12.976 19.157 23.692
10Y CDS Spread 2.437 5.875 8.963 11.995 17.258 21.056
5Y - 1Y Spread 0.789 1.410 1.192 0.735 -0.215 -1.597
Average Firm Count 482.445 121.016 48.710 24.604 10.131 5.331

10 5 2 1

CDS-Compustat Merged Sample

1Y CDS Spread 1.148 3.606 6.553 9.527 14.644 19.469
5Y CDS Spread 1.895 5.028 7.961 10.726 15.405 19.319
10Y CDS Spread 2.142 5.129 7.682 10.051 14.068 17.355
5Y - 1Y Spread 0.739 1.396 1.344 1.086 0.556 -0.388
Leverage 0.331 0.420 0.472 0.509 0.537 0.549
Long-Term Debt Ratio 0.875 0.906 0.910 0.907 0.881 0.851
Log Book Assets 23.096 22.523 22.404 22.408 22.614 22.659
Log Market Equity 22.925 21.641 21.132 20.791 20.468 20.206
Market-Book Ratio 1.478 1.075 0.974 0.886 0.830 0.789
Cash-Assets Ratio 0.096 0.099 0.098 0.098 0.099 0.095
Investment Growth 0.006 -0.003 -0.009 -0.014 -0.020 -0.026
Average Firm Count 263.951 66.373 26.881 13.684 5.791 3.115

CDS-Compustat-EDF Merged Sample

1Y CDS Spread 1.184 3.703 6.797 10.005 15.368 19.495
5Y CDS Spread 1.944 5.132 8.205 11.178 16.004 19.419
10Y CDS Spread 2.192 5.206 7.870 10.399 14.556 17.374
5Y - 1Y Spread 0.753 1.400 1.339 1.053 0.425 -0.281
1Y EDF 1.219 3.961 7.405 10.925 15.544 19.058
5Y EDF 1.042 2.851 4.677 6.463 8.815 10.517
10Y EDF 1.037 2.414 3.579 4.682 6.072 7.050
5Y - 1Y Spread -0.177 -1.110 -2.728 -4.462 -6.729 -8.541
Average Firm Count 201.008 50.648 20.508 10.512 4.516 2.639

This table provides cross-sectional means of the Markit CDS, Compustat, and Moody’s EDF data, focusing
on the tail of the distribution. For each statistic of interest we focus on a small percentage of firms
identified through the highest X% of lagged 1Y CDS. Within each group, the time series average of the
cross-sectional mean is reported. All data are winsorized at the .5% level, by maturity.
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Table 4: Risk Exposures of CDS, Across Different Measures

Panel A – Industrial Production

1Y

ipgrowth q -0.50***
(0.04)

5Y

-0.44***
(0.03)

10Y 1Y

-0.37***
(0.03)

-0.46***
(0.04)

5Y

-0.40***
(0.03)

10Y 1Y

-0.33***
(0.03)

-0.31***
(0.04)

5Y

-0.25***
(0.03)

10Y

-0.20***
(0.03)

Industry FE Y Y Y N N N N N N
Firm FE N N N Y Y Y Y Y Y
Compustat Controls N N N N N N Y Y Y
R2 0.02 0.03 0.03 0.42 0.53 0.56 0.47 0.61 0.64
N 119447 119447 119447 119447 119447 119447 62536 62536 62536

Panel B – Nonfarm Payroll Employment

1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

nonfarmgrowth q -0.36*** -0.30*** -0.24*** -0.34*** -0.27*** -0.22*** -0.18*** -0.12*** -0.08***
(0.03) (0.03) (0.02) (0.03) (0.02) (0.02) (0.03) (0.02) (0.02)

Industry FE Y Y Y N N N N N N
Firm FE N N N Y Y Y Y Y Y
Compustat Controls N N N N N N Y Y Y
R2 0.02 0.03 0.03 0.42 0.52 0.56 0.46 0.61 0.64
N 119447 119447 119447 119447 119447 119447 62536 62536 62536

Panel C – VIX

1Y

VIX q 0.92***
(0.06)

5Y

0.80***
(0.05)

10Y 1Y

0.91***
(0.06)

5Y

0.80***
(0.05)

10Y

0.63***
(0.04)

1Y

0.53***
(0.07)

5Y

0.41***
(0.06)

10Y

0.30***
(0.05)

Industry FE Y Y

0.63***
(0.05)
Y N N N N N N

Firm FE N N N Y Y Y Y Y Y
Compustat Controls N N N N N N Y Y Y
R2 0.06 0.06 0.05 0.45 0.56 0.58 0.48 0.62 0.65
N 119447 119447 119447 119447 119447 119447 62536 62536 62536

Panel D – Market Returns

1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

sp500ret q -0.48*** -0.45*** -0.38*** -0.42*** -0.39*** -0.32*** -0.39*** -0.36*** -0.30***
(0.04) (0.03) (0.03) (0.03) (0.03) (0.02) (0.04) (0.04) (0.03)

Industry FE Y Y Y N N N N N N
Firm FE N N N Y Y Y Y Y Y
Compustat Controls N N N N N N Y Y Y
R2 0.02 0.03 0.03 0.42 0.53 0.56 0.47 0.62 0.65
N 119447 119447 119447 119447 119447 119447 62536 62536 62536

In this table, each column represents a pooled regression of the form:

smit = βMMt + β′
XXit + εmit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) and an aggregate risk measure Mt that is one of quarterly
industrial production growth, nonfarm payroll growth, average VIX (over the quarter), and the S&P 500
quarterly return. The dependent variable represents the CDS spread for firm i at time t. Each panel, top
to bottom, uses a different aggregate risk measure. From left to right, each panel uses no fixed effects,
industry fixed effects, and firm-level effects. All standard errors are clustered at the firm-level.
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Table 5: Credit Spread Risk Exposures in the XS

Industrial Production

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.02*** -0.02*** -0.02*** -0.08*** -0.09*** -0.07*** -1.26*** -1.00*** -0.83***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.18) (0.14) (0.12)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.28 0.46 0.54 0.33 0.45 0.49 0.49 0.58 0.60
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

Nonfarm Payroll Employment

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

nonfarmgrowth q -0.01***
(0.00)

-0.01***
(0.00)

-0.00*
(0.00)

-0.05***
(0.01)

-0.04***
(0.01)

-0.03***
(0.01)

-0.78***
(0.14)

-0.58***
(0.10)

-0.47***
(0.09)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.27 0.45 0.54 0.30 0.43 0.48 0.47 0.57 0.58
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

VIX

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

VIX q 0.07*** 0.08*** 0.06*** 0.24*** 0.22*** 0.14*** 2.40*** 1.87*** 1.47***
(0.00) (0.00) (0.01) (0.01) (0.01) (0.02) (0.29) (0.22) (0.19)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.46 0.56 0.57 0.61 0.53 0.51 0.54 0.62 0.63
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

Market Returns

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

sp500ret q -0.03*** -0.04*** -0.05*** -0.11*** -0.14*** -0.12*** -1.45*** -1.24*** -1.04***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.14) (0.12) (0.11)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.30 0.49 0.56 0.37 0.48 0.50 0.50 0.60 0.61
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

In this table, each column represents a pooled regression of the form:

smit = βMMt + β′
XXit + εmit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) and an aggregate risk measure Mt that is one of quarterly
industrial production growth, nonfarm payroll growth, average VIX (over the quarter), and the S&P 500
quarterly return. For a specific risk measure, from left to right, we focus on ex-ante risk groups 1, 3, and 5
determined by lagged 1Y CDS spreads. The dependent variable represents the CDS spread for firm i at
time t. All standard errors are clustered at the firm-level.

45



Table 6: Cross-Sectional Risk Exposures in Recession States

Overall Cyclicality

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.02*** -0.02*** -0.02*** -0.08*** -0.09*** -0.07*** -1.26*** -1.00*** -0.83***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.18) (0.14) (0.12)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.28 0.46 0.54 0.33 0.45 0.49 0.49 0.58 0.60
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

Cyclicality in Recessions

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.03*** -0.02*** -0.01 -0.12*** -0.12*** -0.10*** -1.58*** -1.19*** -1.01***
(0.00) (0.00) (0.01) (0.02) (0.02) (0.02) (0.29) (0.22) (0.18)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.35 0.51 0.56 0.50 0.55 0.53 0.57 0.65 0.66
N 3821 3821 3821 3703 3703 3703 3560 3560 3560

Cyclicality in Non-Recessions

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q 0.00*** -0.01*** -0.02*** 0.02*** -0.01** -0.02*** 0.10 0.03 0.01
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.09) (0.08) (0.06)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.28 0.50 0.59 0.26 0.45 0.51 0.54 0.63 0.65
N 9106 9106 9106 8809 8809 8809 8440 8440 8440

In this table, each column represents a pooled regression of the form:

smit = β ′ m
ip∆IPt + βXXit + εit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) where the aggregate risk measure is given by quarterly
industrial production growth. For a set of states, from left to right, we focus on ex-ante risk groups 1, 3,
and 5 determined by lagged 1Y CDS spreads. From top to bottom, we vary the time period of focus
(full-sample, recession states, non-recessions). Recession states are determined by the bottom 25% of
industrial production growth movements. The dependent variable represents the CDS spread for firm i at
time t. All standard errors are clustered at the firm-level.
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Table 7: Cross-Sectional Risk Exposures in Recession States, Robustness

Cyclicality in Recessions, Payroll Employment

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

nonfarmgrowth q -0.01*** -0.00 0.01* -0.05*** -0.04*** -0.04** -0.77*** -0.52** -0.47***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.02) (0.28) (0.21) (0.17)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.34 0.50 0.56 0.46 0.53 0.53 0.55 0.64 0.65
N 3821 3821 3821 3703 3703 3703 3560 3560 3560

Cyclicality in Non-Recessions, Payroll Employment

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

nonfarmgrowth q -0.01*** -0.02*** -0.02*** -0.03*** -0.02** 0.00 -0.04 -0.05 0.00
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.10) (0.09) (0.07)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.29 0.51 0.58 0.27 0.46 0.51 0.54 0.63 0.65
N 9106 9106 9106 8809 8809 8809 8440 8440 8440

Cyclicality in Recessions, Market Returns

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

sp500ret q -0.05*** -0.07*** -0.07*** -0.19*** -0.23*** -0.21*** -2.15*** -1.83*** -1.52***
(0.00) (0.01) (0.01) (0.01) (0.02) (0.02) (0.27) (0.22) (0.19)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.38 0.56 0.60 0.56 0.61 0.58 0.59 0.68 0.69
N 3821 3821 3821 3703 3703 3703 3560 3560 3560

Cyclicality in Non-Recessions, Market Returns

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

sp500ret q -0.01*** -0.02*** -0.03*** -0.03*** -0.04*** -0.04*** -0.44*** -0.40*** -0.36***
(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.09) (0.07) (0.07)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.30 0.51 0.59 0.27 0.46 0.51 0.54 0.64 0.65
N 9106 9106 9106 8809 8809 8809 8440 8440 8440

In this table, each column represents a pooled regression of the form:

smit = βMM ′ m
t + βXXit + εit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) where the aggregate risk measure is given by either payroll
employment growth or market returns. For a set of states, from left to right, we focus on ex-ante risk
groups 1, 3, and 5 determined by lagged 1Y CDS spreads. From top to bottom, for a given aggregate risk
measure, we vary the time period of focus (recession states vs. non-recessions). Recession states are
determined by the bottom 25% of that measure’s movements. The dependent variable represents the CDS
spread for firm i at time t. All standard errors are clustered at the firm-level.
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Table 8: Cross-Sectional Risk Exposures, by Liquidity

Full Sample

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.02*** -0.02*** -0.02*** -0.08*** -0.09*** -0.07*** -1.26*** -1.00*** -0.83***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.18) (0.14) (0.12)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.28 0.46 0.54 0.33 0.45 0.49 0.49 0.58 0.60
N 12927 12927 12927 12512 12512 12512 12000 12000 12000

Medium Liquidity (≥ 5 Quotes)

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.02*** -0.02*** -0.02*** -0.09*** -0.10*** -0.07*** -1.46*** -1.14*** -0.92***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.30) (0.23) (0.19)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.26 0.42 0.56 0.28 0.41 0.47 0.38 0.48 0.50
N 9157 9157 9157 7866 7866 7866 4365 4365 4365

High Liquidity (≥ 7 Quotes)

Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.02*** -0.02*** -0.02*** -0.10*** -0.10*** -0.07*** -1.50*** -1.19*** -0.96***
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.36) (0.28) (0.22)

Firm FE Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y
R2 0.22 0.44 0.62 0.28 0.40 0.47 0.41 0.48 0.51
N 5277 5277 5277 4844 4844 4844 2385 2385 2385

In this table, each column represents a pooled regression of the form:

smit = βip∆IP ′
t + βXXit + εmit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) where the aggregate risk measure is given by quarterly
industrial production growth. For a set of states, from left to right, we focus on ex-ante risk groups 1, 3,
and 5 determined by lagged 1Y CDS spreads. From top to bottom, we vary the set of observations based
on liquidity grouping (full-sample, medium (or higher) liquidity, and high liquidity). The liquidity measure
used to sort observations is based on the number of dealer quotes for a contract at a point in time. The
dependent variable represents the CDS spread for firm i at time t. All standard errors are clustered at the
firm-level.

48



Table 9: Decomposition of CDS Spreads

Overall 25 10 5 2 1

Decomposition of 1Y Spreads

1Y CDS Spread 1.179 6.720 9.808 15.021 19.115
1Y Exp. Loss Component 0.837 2.773 5.355

3.664
8.045 11.667 14.448

1Y Credit Risk Premium 0.362 0.964 1.490 1.987 3.529 4.552

Decomposition of 5Y Spreads

5Y CDS Spread 1.940 5.095 8.127 11.020 15.800 19.175
5Y Exp. Loss Component 0.707 2.023 3.508 5.018 7.053 8.527
5Y Credit Risk Premium 1.227 3.042 4.510 5.786 8.114 9.443

Decomposition of 10Y Spreads

10Y CDS Spread 2.189 5.173 7.803 10.284 14.342 17.143
10Y Exp. Loss Componenet 0.690 1.733 2.785 3.839 5.227 6.220
10Y Credit Risk Premium 1.486 3.386 4.861 6.135 8.344 9.609

Slope by Component

5Y - 1Y CDS Spread 0.753 1.400 1.330 1.076 0.527 -0.173
5Y - 1Y Exp. Loss Component -0.116 -0.692 -1.706 -2.772 -4.175 -5.316
5Y - 1Y Credit Risk Premium 0.863 2.068 2.987 3.750 4.510 4.755

Average Firm Count 200.283 50.467 20.447 10.492 4.516 2.639

This table provides cross-sectional moments of the CDS data, decomposed by maturity into expected loss
and credit risk premium components. The decomposition methodology from Berndt et al. (2018) is
explained in greater detail, in the main text. For each panel, from top to bottom, average moments of a
tail portion of the distribution are displayed. All data are winsorized at the .5% level, by maturity.
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Table 10: Cross-Sectional Risk Exposures, by CDS Component

Total Spread

Overall Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.28*** -0.22*** -0.17*** -0.02*** -0.03*** -0.02*** -0.09*** -0.09*** -0.08*** -1.07*** -0.83*** -0.69***
(0.04) (0.03) (0.03) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.16) (0.12) (0.11)

Firm FE Y Y Y Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2 0.53 0.67 0.69 0.31 0.48 0.55 0.37 0.46 0.49 0.57 0.66 0.67
N 48062 48062 48062 9829 9829 9829 9545 9545 9545 9561 9561 9561

Expected Loss Component

Overall Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.15*** -0.03** -0.01 -0.01** -0.00 0.00 -0.05*** -0.01 0.00 -0.55*** -0.16** -0.08*
(0.03) (0.02) (0.01) (0.00) (0.00) (0.00) (0.01) (0.00) (0.00) (0.14) (0.06) (0.04)

Firm FE Y Y Y Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2 0.59 0.69 0.74 0.58 0.83 0.91 0.67 0.78 0.83 0.66 0.73 0.75
N 48062 48062 48062 9829 9829 9829 9545 9545 9545 9561 9561 9561

Risk Premium Component

Overall Risk Group 1 Risk Group 3 Risk Group 5
1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y 1Y 5Y 10Y

ipgrowth q -0.13*** -0.18*** -0.15*** -0.01*** -0.03*** -0.02*** -0.04*** -0.09*** -0.08*** -0.51*** -0.62*** -0.54***
(0.02) (0.02) (0.02) (0.00) (0.00) (0.00) (0.01) (0.01) (0.01) (0.11) (0.08) (0.07)

Firm FE Y Y Y Y Y Y Y Y Y Y Y Y
Compustat Controls Y Y Y Y Y Y Y Y Y Y Y Y
R2 0.38 0.56 0.62 0.45 0.47 0.55 0.55 0.43 0.46 0.43 0.53 0.58
N 48062 48062 48062 9829 9829 9829 9545 9545 9545 9561 9561 9561

In this table, each column represents a pooled regression of the form:

ymit = βip∆IPt + β′
XXit + εmit

broken out by maturity m ∈ (1Y, 5Y, 10Y ) where the aggregate risk measure is given by quarterly industrial production growth. From top to
bottom, the dependent variable is either the total CDS spread, the expected loss component, or the risk premium component. Within a panel, from
left to right, we focus on overall sensitivities by maturity, or ex-ante risk groups 1, 3, and 5 determined by lagged 1Y CDS spreads. All standard
errors are clustered at the firm-level.

50



Table 11: Calibration

(a) Externally calibrated parameters

Value Role Target

δ 0.037 depreciation rate Compustat deprecation rate
α 0.65 returns to scale Hennessy & Whited (2007)
τ 0.35 corporate tax rate US corporate tax rate
ρ 0.95 persistence, aggregate shock Zhang (2005)
σ 0.007 volatility, aggregate shock Zhang (2005)
β 0.9902 discount rate mean, risk-free rate

(b) Internally calibrated parameters

Value Role Target

ϕ1 0.175 equity issuance cost equity issuance, frequency
ξS 0.01 ST debt issuance cost debt issuance, frequency
ξL 0.02 LT debt issuance cost leverage, mean
ψ 36 fixed cost long-term debt share, mean
σε 0.125 volatility, capital quality shock default rate (1 year)
χ0 0.5 recovery in default recovery rate, mean
χ1 3.75 recovery rate, volatility
χ2 -75 corr. btw. recovery & default
γ0 4 household sdf equity risk premium
γ1 -20 Sharpe ratio

(c) Targeted moments

Model Data

equity issuance, frequency
debt issuance, frequency
leverage, mean
long-term debt share, mean
default rate (1 year)
recovery rate, mean
recovery rate, volatility
corr. btw. recovery & default
equity risk premium
Sharpe ratio

6.30
29.43
28.50
97.39
1.26
0.51

-0.49
1.24
0.21

5.25
24.14
32.68
87.11
1.00
0.40
0.10
-0.82

0.22

6.00
0.20

This table presents parameters used to calibrate the model. The top panel focuses on external parameters
that are set outside of model output while the middle panel displays parameters that target data moments.
The final panel examines the performance of the targeted moments, based on a simulated panel of 1000
firms for 2000 quarters, where we discard the first 1000 quarters.
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Table 12: Cross-sectional moments

(a) Means

Data Baseline

Leverage 32.68 28.50
Long-Term Debt Share 87.11 97.39
Investment/Capital 2.35 3.87
Debt Issuance/Capital 6.42 1.88
Equity Issuance/Capital 3.57 2.13
Cash Flow/Capital 3.55 1.29
Debt Issuance, Frequency 24.14 29.43
Equity Issuance, Frequency 5.25 6.30

(b) Standard deviations

Data Baseline

Leverage 19.88 19.91
Long-Term Debt Share 18.08 14.09
Investment/Capital 1.98 11.56
Debt Issuance/Capital 8.82 3.71
Equity Issuance/Capital 3.19 4.56
Cash Flow/Capital 2.40 0.55
Debt Issuance, Frequency - 45.57
Equity Issuance, Frequency - 24.30

(c) Cross-sectional leverage regression

Data Baseline

Size (log(K)) 0.01 -0.60
Market-to-book -0.08 -0.24
Profitability -0.29 -1.12

All model moments are based on a panel simulation of 1000 firms and 2000 periods, discarding the first
1000 periods. We compute cross-sectional moments across firms and time.
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Table 13: Correlations of Average Moments with GDP

Data Baseline

Investment/Assets 0.32 0.35
Debt Issuance/Assets 0.42 -0.01
Equity Issuance/Assets 0.22 -0.23
Cash Flow/Assets 0.36 0.99
LT Share 0.35 0.68
Leverage -0.23 0.93
Default Rate -0.55 -0.78
Credit Spread, Long -0.66 -0.99
Credit Spread, Short - -0.96
Recovery rate - 0.58

All model moments are based on a panel simulation of 1000 firms and 2000 periods, discarding the first
1000 periods. We compute correlations between cross-sectional averages of firm-level variables and
model-based GDP.
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Table 14: Credit Spread Moments – Model vs. Data

(a) All states

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

mean 1.44 0.42 2.22 0.51
stddev 3.61 1.49 3.62 0.54
skew 7.74 4.67 5.29 2.04
kurt 83.93 27.21 42.04 7.19

(b) Positive states

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

mean 1.24 0.16 2.03 0.31
stddev 3.31 0.55 3.32 0.28
skew 7.99 4.78 5.53 1.71
kurt 84.98 29.35 46.15 5.40

(c) Negative states

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

mean 2.06 0.60 2.73 0.66
stddev 4.42 1.96 4.32 0.66
skew 6.14 3.94 4.47 1.68
kurt 55.10 18.74 29.30 5.13

All model moments are based on a panel simulation of 1000 firms and 2000 periods, discarding the first
1000 periods. We compute cross-sectional moments across firms and time. Data moments are from Markit.
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Table 15: Cyclicality of Credit Spreads – Model vs. Data

(a) All firms

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

beta -0.51 -0.18 -0.45 -0.14
se 0.04 0.00 0.03 0.00

(b) Risk group 1

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

beta -0.02 -0.00 -0.02 -0.03
se 0.00 0.00 0.00 0.00

(c) Risk group 3

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

beta -0.13 -0.00 -0.14 -0.07
se 0.01 0.00 0.01 0.00

(d) Risk group 5

data, 1 qtr model, 1 qtr data, 5 yrs model, 5 yrs

beta -1.76 -0.89 -1.47 -0.42
se 0.15 0.01 0.13 0.00

All model moments are based on a panel simulation of 1000 firms and 2000 periods, discarding the first
1000 periods. Each period, we split firms into 5 bins according to their equity value. Within each bin, we
then regress credit spreads on the aggregate state Z. The model regressions do not contain firm fixed
effects. Data moments are from Markit.
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Table 16: Model Robustness

(1) (2) (3) (4) (5) (6) (7)

credit spread (1 year) 0.42 0.42 1.45 0.74 0.42 0.61 0.83
credit spread (5 years) 0.51 0.47 0.45 0.35 0.51 0.06 0.51
default rate 1.26 1.19 3.66 1.66 1.26 1.93 1.75
recovery in default 0.51 0.48 0.33 0.43 0.51 0.27 0.49
Leverage 28.50 30.04 77.59 44.64 28.53 81.91 28.01
Long-Term Debt Share 97.39 98.04 97.36 77.10 97.41 33.40 96.06
beta (1 year) -0.18 -0.17 -1.46 -0.20 -0.18 -0.93 -0.48
beta, (5 years) -0.14 -0.12 -0.22 -0.07 -0.14 -0.08 -0.16

In this table, we compare model solutions under different parameter sets. Model (1) is the baseline. Model
(2) sets γ0 = 0 and γ1 = 0, such that investors are risk-neutral. Model (3) removes equity issuance costs
(ϕ = 0), model (4) debt issuance costs (ξS = ξL = 0). Model (5) sets γ1 = 0, such that risk aversion is
constant over the business cycle. Model (6) removes both debt and equity issuance costs, i.e.
ϕ = ξS = ξL = 0. Model (7) reduces the value of the equity financing constraint.
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