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Systematic Scenario Selection 
Stress testing and the nature of uncertainty 

 

Abstract 
We present a technique for selecting multidimensional shock scenarios for use in financial stress 
testing.  The methodology systematically enforces internal consistency among the shock 
dimensions by sampling points of arbitrary severity from a plausible joint probability 
distribution. The approach involves a grid search of sparse, well distributed, stress-test scenarios, 
which we regard as a middle ground between traditional stress testing and reverse stress testing. 
Choosing scenarios in this way reduces the danger of “blind spots” in stress testing.  We suggest 
extensions to address the issues of non-monotonic loss functions and univariate shocks.  We 
provide tested and commented source code in Matlab®. 

 

Keywords:  risk management, stress testing, maximum portfolio loss, elliptical distribution, 
value at risk, Knightian uncertainty 
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1. Introduction 
 

This paper presents an efficient and systematic methodology for selecting multiple well 

distributed stress scenarios (or shocks) in the context of elliptically distributed multivariate risk 

factors.  The recent crisis is a chastening reminder of the potential for large, rare shocks in 

financial markets. Because these events are typically difficult to observe in practice, they tend to 

defy the traditional statistical tools of risk management, such as value at risk or extreme value 

theory.  In that context, stress testing is an increasingly important tool for understanding portfolio 

risk exposures.  It is standard practice within financial institutions (CGFS, 2005), and is also 

codified in regulation and international standards, starting with the Basel market risk amendment 

(BCBS, 1996), and exemplified more recently by the Federal Reserve’s 2009 Supervisory 

Capital Assessment Program (SCAP) and ongoing Comprehensive Capital Analysis and Review 

(CCAR).1 An important part of a stress testing implementation is the selection of the particular 

scenarios to consider. Recent practice has focused on two objectives to guide scenario selection, 

which stand to some degree in natural tension: that they should be severe but plausible.2     

Because it can be applied without reference to precise event probabilities, stress testing is 

                                                 
1 For a general survey of stress testing, see Alfaro and Drehmann (2009), Borio, Drehmann, and Tsatsaronis (2012), 

Čihák (2007), Drehmann (2009) or Quagliarello (2009). Regarding the use of stress testing in the Basel accord, see 
BCBS (2006, esp., ¶718).  On the SCAP and CCAR, see FRB (2009) and FRB (2012).  Other prominent regulatory 
stress testing programs include the International Monetary Fund’s (IMF) Financial Sector Assessment Programs 
(FSAP) (see Blaschke, Jones, Majnoni, and Martinez Peria, 2001; or IMF, 2011); and the European Banking 
Authority’s (EBA) EU-Wide Stress Tests (see EBA, 2011).   
2 The notion of “severe yet plausible” scenarios is widely discussed (see, for example, Alfaro and Drehmann, 2009, 
Breuer, et al., 2009, or Sorge, 2004, p. 3), but never unambiguously defined. Roughly, “severity” indicates 
sufficiently impactful to reveal fragilities or vulnerabilities in the portfolio or system; “plausibility” indicates 
sufficiently realistic to justify managerial attention or remediation. 
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well suited to cases of Knightian uncertainty.3 At least two important forces can give rise to 

Knightian uncertainty in the context of financial risk management. First, the statistical 

distribution of crucial risk factors may simply be unknown. For example, the long-term default 

and prepayment risk of various innovative mortgage securities in the early 2000s was largely a 

matter of conjecture and extrapolation, because these products had never experienced the 

contraction phase of a business cycle. Even if their statistical behavior is generally well 

understood, behavior in the tails may be clouded by a dearth of extreme observations.4  In 

addition, statistical regime shifts can invalidate historical data, often abruptly and without 

warning. Rowe (2006) provides the example of the 1997 Asian currency crisis. The events of 

September 2008, while painful in all other respects, have been instructive to stress testers in that 

they illustrate the possibility and potential impact of an extreme scenario in the most 

sophisticated and developed financial markets. Finally, the loss function itself may be unknown; 

this may not be true for an individual portfolio manager, but regulators frequently face varying 

degrees of opacity about institutions’ portfolios. 

In traditional stress testing, the tester (for example, the regulator) chooses one or more 

shocks, and calculations reveal the response – for example, mark-to-model losses – of the 

institution or portfolio.  Note that the scenarios are posited ex ante, typically without detailed 

knowledge of the portfolio loss function.  Careful choice of scenarios is important. Analyzing 

each scenario is typically expensive, both computationally and organizationally, so that a 

parsimonious scenario budget must be imposed. Moreover, an incautious choice of scenarios can 

lead to disputes over plausibility or reliability. Both outlandishly as well as insignificantly 

                                                 
3 Knight (1921) dichotomizes situations of imperfect information into “risk,” where the probability law is known, 
and “uncertainty,” where it is not known.  Knightian uncertainty is sometimes called “epistemic uncertainty.” 
4 Glasserman, Kang and Kang (2012) propose a data envelopment technique to make efficient use of a limited 
number of tail observations. 
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stressful scenarios may be problematic, albeit in different ways. An alternative is reverse stress 

testing, which asks some variant of the inverse question: what is the most likely event that could 

create a response exceeding a given threshold, such as losses in excess of available capital.  

Reverse stress testing obviates disputes over plausibility by choosing the scenario most likely to 

provoke the relevant outcome. 

There have been a number of recent theoretical papers on alternative approaches to stress 

testing, including Breuer (2007, 2008), Glasserman, Kang and Kang (2012), Breuer, Jandačka, 

Rheinberger and Summer (2009), Studer (1999), Pritsker (2011), and Breuer and Csiszár (2010). 

Any stress testing implementation must address two broad issues in an environment of limited 

information: (a) What is the nature of the forces or factors imposing stress on the system or 

portfolio?; and (b) What is system’s response to those stresses?5 Both of these are challenging 

problems that would benefit from careful analysis.  However, there is as yet no unified theory of 

stress testing:  it is still a practical technique, and must be engineered to address the requirements 

of each particular problem at hand.6 The methodology we outline below is tailored to several 

practical objectives and constraints:  

(1) For simplicity, we focus on tests for market risks. Much of what we describe should 

generalize readily to credit and other risks, but we leave those topics for future 

research. 

(2) We assume that the risk factors can be reasonably well described by an elliptical 

                                                 
5 We refer to the system response problem as understanding the portfolio “loss function.” Borio, Drehmann, and 
Tsatsaronis (2012, p. 2) break this step down further into three components: (a) identifying the assets and liabilities 
that create the risk exposures; (b) defining the particular outcome, such as portfolio losses, ex-post capital, or 
institutional failure to be measured; and (c) understanding the mathematical model for mapping from shocks to 
measured outcomes. 
6 “It is critical to design stress tests properly, tailoring them to the specific purpose,” Borio, Drehmann, and 
Tsatsaronis (2012, p. 1). Friedman, Huang and Huang (2010) underscore this point by demonstrating how 
knowledge of the “severity function” (we call this the “loss function” below) can be exploited via hill climbing to 
identify more efficiently the especially stressful scenarios within the plausible set.  In our context, we presume that 
the loss function is not directly observable to the stress tester.  
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distribution.  When this assumption is apt, the internal consistency of shocks across 

the individual component risk factors can be achieved by restricting attention to the 

likely comovements as defined by the elliptical distribution.  This internal consistency 

is an important precondition for plausibility.  For example, in the spirit of Stock and 

Watson (2002), we have been experimenting in other work with estimating a system 

of market risk factors such as interest rates, credit spreads and volatility surfaces, 

forecasting their joint distribution with the goal of finding internally consistent 

simultaneous shocks to a wide range of market factors. After pre-filtering the series 

with a vector autoregression, principal components analysis (PCA), and GARCH, the 

joint distribution of the residual series is indeed approximately elliptically 

distributed.7  

(3) We consider a situation, confronted in many regulatory stress tests, in which the loss 

function is not directly observable, in part because the portfolio composition cannot 

be precisely observed without intensive effort. For example, an opaque portfolio may 

conceal surprising contingent losses, such as embedded “short put” positions, that 

might be discovered through a systematic search that reveals potential losses for a 

wide range of market scenarios. 

(4)  Tailoring the stress scenarios to known features of particular portfolios may be 

discouraged, because this would “unfairly” disadvantage individual firms in the 

context of a “bottom-up” test applied to many firms simultaneously, such as the 

SCAP or CCAR.  
                                                 
7 As another simple example, it is well known that a variation in a detailed interest-rate term structure can be well 
represented by three orthogonal principal components, corresponding roughly to the short rate, the long rate, and the 
curvature (see Alexander, 2008, chapter II). By construction, then, orthogonal shocks chosen in this space of latent 
factors correspond to shocks that are internally consistent in the space of interest rates.  In other words, imposing 
this structure excludes the possibility of a broad class of implausible (internally inconsistent) shocks such as a large 
jump up in the 30-day rate simultaneous with a sharp drop in the 60-day rate.    



7 

(5) A corollary of the imperfect knowledge of portfolio composition is that the set of 

relevant stressors – the appropriate dimensions of the state space from which to 

choose scenarios – may also be unclear, encouraging the “casting of a wide net” for 

many possible factors. The factor space may be large, providing another motivation 

for PCA as a technique to reduce the number of factor dimensions to consider. 

The methodology we propose involves a grid search of sparse, well distributed, stress-test 

scenarios, which we regard as a middle ground between traditional stress testing and reverse 

stress testing. Because the optimal trade-off between parsimony and accuracy depends 

significantly on the practical details of a given implementation, such as the number and type of 

institutions being examined or the nature of risks under consideration, we offer a methodology 

that works well for small scenario sets while also scaling well to larger samples.8 By “well 

distributed” we mean that the stress scenarios are approximately evenly distributed in the 

outcome space. We believe it to be especially useful in the context of Knightian uncertainty 

about the portfolio risk exposures, which can arise in a number of important practical contexts.  

For example, in its recent SCAP program, the Federal Reserve tested multiple financial 

institutions simultaneously.  For comparability, all institutions faced identical scenarios in these 

tests; for fairness, the scenarios were chosen before examining the individual banks’ portfolios.  

This intentional information gap, justified by the desire to treat firms equitably, creates 

significant, unavoidable Knightian uncertainty for policymakers, even in the absence of 

adversarial behavior such as intentional concealment of significant loss exposures.9 Scenario 

                                                 
8 The heart of the trade-off is that computational cost and accuracy of response are typically both increasing in the 
number of scenarios.  Thus, there is no guarantee that a sufficiently accurate scenario set will also be adequately 
parsimonious.  Addressing this question requires detailed understanding of the implementation context, and is 
therefore beyond our scope here.  
9 It is well known that investment managers can manipulate standard performance metrics by embedding “short 
puts” or other contingent negative exposures to boost the portfolio average; see Lo (2001), Foster and Young (2010), 
and Goetzmann, Ingersoll, Spiegel, and Welch (2007). On the other hand, Friedman, Huang and Huang (2010) point 
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selection typically occurs once in these exercises, so there is limited or no opportunity for an 

iterative search of the scenario space in these exercises. Similar issues face others evaluating 

financial portfolios at “arm’s length” or with otherwise restricted access to the intimate details of 

portfolio composition and risk exposures: for example, external auditors, third-party risk model 

validators, and due-diligence evaluators of investment advisors or fund of funds managers.  

 

1.a.  Risk-modeling considerations 

The choice of shocks is one of the key elements in any stress test.  An important criterion 

in selecting stress scenarios is the “severe but plausible” standard advanced by the Bank for 

International Settlements (BIS), among others (see note 2 above).  Because plausibility is seldom 

explicitly defined, it can become a contentious issue, especially if the stress tests could lead to 

regulatory interventions or other binding constraints on behavior.  Such ambiguity – along with 

the resulting “plausibility wars” – is inherent to all forecasting.  

Some of the most important stress scenarios, such as the 2008 market collapse, were 

systemic events involving liquidity and deleveraging spirals, behavioral feedback effects, and 

other structural breaks and non-linearities that are inherently difficult to predict and therefore 

easy to dismiss as ex ante implausible.  Indeed, Borio, Drehmann and Tsatsaronis (2012) 

emphasize the “paradox of financial instability,” that the system appeared strongest precisely 

when it was most vulnerable.  In the counterfactual world of the typical stress test, a 

macroeconomic shock occurs, and we observe the subsequent impact on financial portfolios; 

awkwardly, the recent financial crisis preceded the macroeconomic reaction.  

                                                                                                                                                             
out correctly that stress testers with deeper knowledge of the portfolio composition can be more effective.  This 
underscores the point made by Borio, Drehmann and Tsatsaronis (2012) that the appropriate stress testing 
methodology depends on the details of the specific implementation context; there is no universally optimal 
approach.  
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We work explicitly with probability contours from multivariate elliptical distributions.  

While this does not eliminate the inherent subjectivity of the plausible, for all the reasons just 

highlighted, it nonetheless provides a benchmark to guide discussions of plausibility.  In this 

regard, the 2008 market event provided a well documented historical example of the statistical 

behavior of risk factors in a major financial crisis.  We encourage the use of the shocks that 

mimic the post-2008 volatility regime alongside shocks corresponding to more tranquil episodes. 

If performed systematically, a multi-scenario sampling exercise can be useful in 

discovering “short puts” and other contingent exposures that could result in fatal losses.10  Such 

contingencies need not be the result of intentional concealment; for example, hedged portfolios 

can leave non-monotonic basis risk, which can then be magnified via leverage. Nonetheless, 

when embedded in a complex portfolio, contingent exposures will often lurk beyond the view of 

regulators and investors. Moreover, unlike value-at-risk (VaR), stress testing can facilitate an 

attribution analysis from an identified loss outcome to the details of the underlying stress 

scenario.  If multiple stress scenarios are tested – as we propose here – then a diverse sample of 

such attributions can be assembled to provide a more complete picture of the loss exposures. 

This has advantages over the typical approach to reverse stress testing, which only reports the 

single worst scenario found.  Contingent losses can also have a systemic aspect if they are 

correlated across firms.  Widely shared contingent exposures can lead to crowded trades – with 

concomitant fire sales and negative feedback loops – if the shared contingency moves into the 

money for all participants simultaneously and markets cannot accommodate a large, rapid order 

flow.  Applying systematic sampling of portfolio exposures to the cross-section of firms may 

                                                 
10 Agarwal and Naik (2004) document the prevalence of contingent exposures in hedge fund portfolios, for example.  
Lo (2001) provides an overview of a number of related issues.  Goetzmann, Ingersoll, Spiegel and Welch (2007) 
demonstrate how embedded contingencies can distort standard performance measures, potentially misleading 
outsiders without direct knowledge of the portfolio. 
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help expose such shared contingencies.  In sum, certain stress-testing implementations call for 

the application of multiple multi-dimensional shocks to multiple firms (perhaps repeatedly over 

time). 

1.a.i.  Scenario types 

In practice financial risk managers typically stress-test their portfolios using either 

historical replication scenarios or hypothetical risk-factor changes.11  Historical scenarios are 

based on extreme events in the past, such as the 1987 stock market crash, and are prima facie 

plausible.  While this provides information on the sensitivity of the portfolio to market shocks, it

restricts attention to prior stress episodes.  The same prima facie plausibility makes it likely that 

portfolio managers will be defended against a recurrence. Hypothetical scenarios, in contrast, are

not constrained to replicate specific past incidents, and can therefore span a greater set of 

possibilities.  The Basel Committee has proposed that stress scenarios should be plausible, “most

adverse,” and that they should help to identify risk-mitigation possibilities.12  In particular, 

reverse stress tests are usually hypothetical:  BIS (2006, ¶718(Lxxxiii)) suggests that, “a bank 

should also develop its own stress tests which it identifies as most adverse based on the 

characteristics of its portfolio.”  A drawback to hypothetical scenarios is that they depend on the 

quality of the inputs and methods used to generate them, and are therefore potentially biased by 

 

 

 

                                                 
11 BIS (2009, p. 5) highlights the distinction between historical and hypothetical shocks.  Breuer and Krenn (1999, 
§3 and §4) discuss the issues in additional detail.  Regarding historical scenarios, see Crouhy, Galai, and Mark 
(2001), section 6.3 (pp. 232-241), on “Stress Testing and Scenario Analysis.”  BIS (2006, ¶718(Lxxxii)) 
recommends testing against, “past periods of significant disturbance.”  ECB (2006, p. 150) further distinguishes 
between historical, hypothetical, probabilistic, and reverse-engineered scenarios.  Our methodology falls in the 
probabilistic category, meaning it is based on the probability distribution of the risk factors.  See Jones, Hilbers, and 
Slack (2004) for a discussion of the traditional approach to hypothetical scenario construction.  For additional 
regulatory analyses, see BIS (2005a), Haldane (2009), and the Senior Supervisors Group (2008).  Our method is 
similar to the “stress envelope” approach, described by Crouhy, Galai, and Mark (2001, pp. 233-236), in that we 
propose shocking multiple exogenous risk factors simultaneously.  It is not “systematic sampling” in the sense of 
Glasserman (2004, pp. 208-209).   
12 Breuer, et al (2009, p. 205-206) interpret these criteria as “plausible,” “severe,” and “suggestive of risk-reducing 
action.” ECB (2006, p. 150) asserts that scenarios should be “plausible, extreme and of systemic relevance.” 
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the idiosyncratic views of the analysts making the selection. 

To avoid these limitations, we select hypothetical scenarios systematically, via a grid 

search.  A systematic approach faces challenges of its own.  For example, Breuer (2008) 

demonstrates that defining “plausibility” in terms of a probability threshold induces an artifact of 

“dimensional dependence,” whereby the addition of (even irrelevant) risk dimensions increases 

the maximum loss.  To avoid this, he suggests standardizing on the Mahalanobis radius (as in our 

equation (6) below) instead of the raw threshold probability level.   

1.a.ii.  Risk factors 

Scenario-based methodologies select from a universe of possible outcomes for a set of 

exogenous risk factors.  Following Studer (1999), Breuer (2007, 2008), Breuer, et al (2009), and 

others, we select scenarios for risk factors that obey a multivariate elliptical distribution.  Given 

such a point set, analysts evaluate the properties of the portfolio (for example, position 

valuations, credit losses, risk-factor sensitivities) as functions of each scenario.  Our approach is 

relevant, for example, for the significant practical case of a regulator, internal or external auditor, 

clearinghouse, or model validator who must assess portfolio risk without direct and ongoing 

access to full portfolio information.  Given an outsider’s perspective, it is important to be 

agnostic ex-ante about the risk exposures within the portfolio.   

One advantage of a factor-based approach is that the stochastic characteristics of 

exogenous risk factors are typically easier to analyze than the characteristics of the positions or 

portfolios themselves, due to the non-linear nature of many financial instruments, including those 

with contingent payoffs or embedded option clauses.  Significantly, the loss function for many 

instruments is not only non-linear, but non-monotonic, implying that extremes in the risk-factor 

space need not correspond to extreme losses (see Section 3.a below). In many cases, the need for 

formal risk analysis increases with the amount of non-linearity structured into a position, since 
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users are less likely to have well developed intuitions for the behavior of more complex 

exposures. While position-level non-linearities may smooth out in the aggregation to a highly 

diversified portfolio, this is not necessarily the case.   

We start with an elliptical shell, which might be interpreted as the isoprobability 

threshold for extreme events defined by simultaneous outcomes for the risk factors that occur at 

a specified probability quantile, α. Breuer (2008) interprets it more generally, as the elliptical 

shell of the relevant Mahalanobis radius.  Although this question of interpretation may be 

relevant for the ultimate application, it does not affect the mechanics of the algorithm presented 

here.  Given an elliptical shell, we map it to a unit spheroid, and project a collection of lattices 

(or mesh) onto the surface of the spherical shell.   

1.a.iii.  Distributional assumptions 

The literature on mesh generation is large (Bern and Plassmann, 2000).  For example, 

traditional (quasi-)Monte Carlo methods are based on point sets that sample the unit cube in d 

dimensions, but plausible domains for variables of interest are much more usually elliptical or 

spherical.  Since the cube contains points that the enclosed sphere does not, this approach leads 

to excessive rejection regions in the corners of the cube.  This becomes more problematic as the 

dimensionality d increases. Pistovčák and Breuer (2004, p. 385) state,  

“So far, there is no algorithm known which generates low-discrepancy sequences 
in an n-dimensional ellipsoid.  Though it is possible to generate points in a cuboid 
which encloses the ellipsoid, this is practical only if n is low.” 
 

We propose to remedy this situation (noting that there is a substantial literature on techniques for 

uniform packing of points on the sphere; see footnote 17 below).  We present a lattice algorithm 

for selecting well distributed points on the surface of an arbitrary d-dimensional ellipsoid. The 

algorithm satisfies three practical requirements:   

1) It guarantees that all the “corners” (i.e., the orthants defined by the axes of the 
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isoprobability ellipsoid) of the space will be reached by at least one scenario. This 
ensures that the method has reasonable coverage of the state space even for small 
samples.13 

2) It spaces scenarios approximately evenly throughout the ellipsoid.  (Precisely evenly 
distributed points can be computationally very costly to find.14) 

3) It has computational complexity of order O(N), independent of d, where N is the number 
of scenarios. This ensures that the method scales efficiently to larger samples if needed. 
  

Regarding requirement (1), Studer (1997, p. 71) notes that capturing scenarios in the corners is 

useful in estimating the “mixed” cross-product terms in a quadratic expansion of the loss 

function.  Requirements (2) and (3) are interrelated, as the approximation allowed by 

requirement (2) makes possible the attainment of linear complexity in (3).  The methodology 

exploits certain fundamental properties of multivariate elliptical distributions, and its immediate 

applicability is limited to that family.  We also present a natural extension to the algorithm to 

generate a point set distributed throughout the interior of the d-dimensional ellipsoid. 

The family of multivariate elliptical distributions includes some of those most commonly 

used in financial and statistical analysis, including the multivariate normal (including normal 

variance mixtures), Student’s t (with the multivariate Cauchy as a special case), and logistic.  

The elliptical family also includes some more exotic examples, such as the symmetric 

multivariate normal inverse Gaussian (NIG) and the symmetric multivariate generalized 

hyperbolic distributions (Bingham and Kiesel, 2002).  Moreover, multivariate elliptical 

distributions play a canonical role in modern theoretical and empirical finance, including the 

standard capital asset pricing model of jointly normal excess returns on equities, and multifactor 

Gaussian affine-yield models of the term structure of interest rates (see Campbell, Lo, and 

MacKinlay (1997), chapters 5 and 11).  While elliptical distributions impose a significant 

                                                 
13 For ellipsoids defined by rotation, such as an ordinary sphere, some or all of the axes may be undefined.  In such 
cases, the axes might be chosen arbitrarily or by other criteria. 
14 For example, Bendito, Carmona, Encinas and Gesto (2008) find that iterative solutions for certain versions of the 
problem can be on the order of O(N15), where N is the number of points.  See Sun and Chen (2008, p. 191) for a 
definition of uniformity of a point set on the sphere. 
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symmetry restriction – specifically, all univariate marginal distributions must be symmetric – 

they can be significantly easier to use for practical risk modeling in situations where this 

symmetry constraint is plausible.  In many cases, the symmetry restriction has proven to be 

reasonably consistent with the underlying data processes. 

1.a.iv.  Loss definition 

The practice of stress testing has been formalized in a number of recent papers.  The 

maximum loss measure of Studer (1997, 1999) captures the notion of stress testing as a search for

those combinations of risk-factor outcomes that would generate unacceptably large (for example, 

default- or failure-inducing) portfolio losses.  The maximum loss metric is weakly coherent, and 

generalizes readily to a concept of “dangerous regions” in the factor space that would produce 

losses in excess of some critical threshold of acceptable portfolio risk.  Heretofore, practical 

implementations of the maximum loss measure have been limited by either restrictive 

assumptions on the shape of the loss function, as in Studer (1997, §3.4.1), or computationally 

costly iterative approximation algorithms such as Studer (1997), or Pistovčák and Breuer (2004). 

We follow McNeil, Frey, and Embrechts (2005, §2.1) in defining a portfolio value, Vt, as 

a function of time and a vector of exogenous risk factors, ut  d:  Vt ≡ f(t, ut), and losses, Lt, as 

the negative of changes in value:   

 Lt+1(ut, wt+1) ≡ –[Vt+1 – Vt] = –[f(t+1, ut+1) – f(t, ut)] = f(t, ut) – f(t+1, ut+wt+1) , (1) 

where the innovation in the risk factors, wt+1, is a random variable, conditional on the 

information available at time t, denoted Ft.  Given the loss function, define the conditional loss 

distribution via its cumulative distribution function: 

 FLt+1|Ft
(wt+1, L*) ≡ P[Lt+1(ut, wt+1) ≤ L* | Ft] , (2) 

where ut  Ft, and L*   is an arbitrary loss threshold.  Randomness enters the model only 
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through the innovation to the exogenous risk factors, wt+1, due to the conditioning on Ft. 

In this context, stress scenarios can be seen as a form of quasi-Monte Carlo integration of 

the loss function, Lt+1(u, w).15  From this perspective, we are interested in finding the large-loss 

“hot spots” on Lt+1(u, w).  Studer (1997, 1999) and Breuer (2007) pose this as the problem of 

searching for the maximum loss portfolio within a so-called “trust region,” {W }  d
p , of the 

factor space: 

 Lmax|{Wp}(ut, wt+1) ≡ max w{Wp}L (ut, w), (3)

In other words, the maximum loss, Lmax, is the largest loss for any scenario within the plausible 

subset, {Wp}.  This maximum loss measure is weakly coherent.16  Studer (1997, p. 76) extends 

the analysis beyond an individual maximal loss scenario, to consider “dangerous regions” 

exceeding a specified loss threshold.  A desirable characteristic of quasi-Monte Carlo integration 

is that, typically, in the limit as N→∞, the integral converges to the true function, Lt+1(u, w) as 

long as the loss function is continuous.17  A second desirable characteristic of quasi-Monte Carlo 

 

                                                 
15 Scenario-based approaches, including the method described here, are less sophisticated than many Monte Carlo 
techniques, such as importance sampling, control variates, or conditional Monte Carlo, which exploit special 
features of the problem at hand to obtain greater efficiency in estimation.  Many Monte Carlo techniques are 
intended to price securities, and therefore benefit from a high degree of precision.  Similarly, adaptive sampling 
methodologies, which allow feedback from testing early scenarios to help guide stratification of later samples, also 
use special features of the problem domain and are more complex than our approach.  See Boyle, Broadie, and 
Glasserman (1997), Glasserman (2004), and Lemieux (2009) for an overview of Monte Carlo techniques in finance.  
Thompson and Seber (1996) discuss adaptive sampling.  In essence, adaptive sampling is a form of importance 
sampling, in which the “important” regions are not determined theoretically, for example, by likelihood ratios, but 
via information learned from analysis of a first-stage sample.  In this context, our sampling approach might be useful 
as a first-stage grid search to seed a multi-stage adaptive sample.  Because the typical goal in assessing portfolio risk 
is to identify the extrema of the loss function, as described below, second-stage and later adaptive samples might be 
determined by some form of hill-climbing algorithm. 
16 See Studer (1997), pp. 23-24.  Weak coherence is defined by Artzner, et al (1999).  Studer’s approach is applied 
in a series of papers, including Breuer and Krenn (1999), Breuer (2007, 2008), and Breuer and Csiszár (2010).  
Studer’s loss function is defined relative to the expected outcome at a forecast horizon, T, rather than the base case, 
ut; thus:  LT = –[f(T, ut+wT) – f(t, ut+E(wT))].   This has the convenient property of pre-centering the loss distribution, 
so that equation (10) below is superfluous.  This pre-centering does not otherwise affect most of the analysis that 
follows below.  Note that the two definitions converge if wt follows a random walk.   
17 See Niederreiter (1992) for details. For the special case of a quadratic loss function, Studer (1997) is able to derive 
a number of useful results, including a search algorithm that applies a series of local quadratic approximations to 
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integration is that low-discrepancy point sets constrain the integration error in finite samples.   

1.b.  Elliptical distributions 

Consider a general multivariate elliptical distribution for the risk factors,  

W ~ Ed(μ, Σ),   (4) 

where W  d, and where μ  d is the location (i.e., mean) vector, and Σ   dd is the 

dispersion matrix.18 Given a particular elliptical distribution, Ed(μ, Σ), the plausible subset, {Wp} 

described above might naturally be specified as the region in d bounded by an isoquant of the 

distribution at some appropriate confidence level, such as the 99th percentile ellipsoidal shell. 

For example, the multivariate Student’s t distribution, W ~ td(ν, μ, Σ), is elliptical with 

covariance matrix cov(W) = (ν/(ν–2))Σ, defined only if ν > 2.  A d-dimensional elliptical 

distribution is related to an underlying k-dimensional spherical distribution, S ~ Sk, via an affine 

transformation, W  μ + AS, where the symbol “” indicates equality in distribution.  In general, 

the matrix A  dk is related to the dispersion matrix as:  AAT = Σ.  For simplicity, we restrict 

attention to the common special case in which Σ is positive definite, d = k, and A is the dd 

lower-triangular Cholesky factorization of the dispersion matrix, also written as A = Σ½.  

Alternatively, W  μ + RAS0, where S0 is uniformly distributed on the k-dimensional unit 

spheroid, R is a radial random variable (the “generating variate”) independent of S , and A = Σ½
0 .   

The quadratic form:  

 Q(W, μ, Σ–1) ≡ (W–μ)TΣ–1(W–μ),  (5) 
                                                                                                                                                             
find the unique maximum loss for a more general (i.e., non-quadratic) loss function.  In the present paper, we do not 
focus directly on the shape of the loss function.   
18 The presentation of elliptical distributions here parallels McNeil, Frey, and Embrechts (2005), §3.3.2, pp. 93ff, 
who elaborate the issues in much greater detail.  The implication of equation (4) is that the distribution, Ed(μ, Σ) 
defines a set of concentric elliptical shells of the form given by equation (6); the probability density is the same at 
any point on such an elliptical shell. See also Fang, Kotz, and Ng (1990). The multivariate t distribution is 
particularly useful in risk-management applications.  In addition to generalizing the multivariate normal distribution 
as a special case (  ), the t distribution also exhibits fat tails and tail dependence, both of which frequently occur 
in empirical data sets describing financial markets. 
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defines the isoprobability contours of an elliptical distribution.19  In other words, a set of points, 

 ε(μ, Σ–1, c) ≡ {w  d : Q(w, μ, Σ–1) = c}  (6) 

for some constant c (the Mahalanobis radius), defines an ellipsoid, ε(μ, Σ–1, c)  d, of equal 

probability density.  One of these ellipsoids, ε(μ, Σ–1, cα), will correspond to the extreme-event 

probability threshold of interest, α.  For example, in a VaR application, a threshold of α = 0.99 

(indicating that a probability mass of (1 – α) = 0.01 lies outside the ellipsoid) might be 

appropriate.  It is useful to note that μ, Σ–1, and cα determine the location (i.e., center), shape, and 

size, respectively, of the ellipsoid.  The eigenvectors of Σ–1 fall along the principal axes  of the e 

ellipsoid (assuming the axes have been identified), while the lengths of the principal axes are 

proportional to the inverse square root of the eigenvalues of Σ–1.  The variable cα is the constant 

of proportionality that establishes the absolute length of the principal axes.  (See the class:  

hyperellipsoid in Appendix A.)  

The relationship between the probability threshold, α, and the size, cα, of the 

corresponding ellipsoidal contour depends on the specific elliptical distribution under 

consideration, via the formula: 

 (W–μ)TΣ–1(W–μ)  R2    ↔    α = P[(W–μ)TΣ–1(W–μ) ≤ cα] = P[R2 ≤ cα] (7)

where P[•] indicates probability, and R is the generating variate described above.20  Recall the 

 

                                                 
19 This quadratic form is the square of the Mahalanobis distance, DM(W), from W to the center, μ, with respect to Σ: 

  DM(W) = [(W–μ)TΣ–1(W–μ)]½ .  

See, for example, Frahm (2004) or Liu and Rubin (1995).  The Mahalanobis distance is a generalization of ordinary 
Euclidean distance (the special case, Σ = Id) that essentially normalizes by the size of the ellipsoid in the direction of 
W.  This normalization adjusts for covariance, and also renders the Mahalanobis distance scale-invariant.  It is 
convenient below to parameterize the ellipsoid via the inverse of the dispersion matrix, Σ–1, rather than Σ directly.  
This is a cosmetic detail that simplifies the software implementation without constraining the results. 
20 See McNeil, Frey, and Embrechts (2005, §3.3.3), Fang, Kotz, and Ng (1990, §2.5), and Frahm (2004, §1.1, 
especially his Example 1 (pp. 4-5) and Example 4 (pp. 6-7)) for further discussion.  Frahm (2004), Bingham, Kiesel 
and Schmidt (2003), Tyler (1987), and Liu and Rubin (1995) offer some strategies for estimating the parameters, μ 
and Σ, of an elliptical distribution.  Huffer and Park (2007) suggest a general test for elliptical symmetry. 
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artifact of “dimensional dependence” described by Breuer (2008), and his recommendation to 

standardize a stress-testing regime on plausible Mahalanobis radii rather than specific probability 

thresholds.  While this avoids dimensional dependence if the number of factors is varied, now we 

must choose a value for cα rather than α.  To find the size parameter, cα, when W has a 

multivariate normal distribution, we start with the fact that R2 ~ χ
2
d  , so that: 

 α = P[R2 ≤ cα] = χ  (
2 2
d cα)     →     cα = [χ

–1
d  ] (α) , (8) 

where χ
2
d  (•) is the chi-square cumulative distribution function (c.d.f.), and [χ  ]

2 –1
d (•) is the chi-

square inverse c.d.f.  Similarly, if W has a d-dimensional t distribution, then R2/d ~ Fd,υ, the F 

distribution with d and υ (numerator and denominator, respectively) degrees of freedom, 

implying P[(1/d)R2 ≤ κα] = Fd,υ (κα) for an arbitrary measurement threshold κα  [0, ).  Now 

choose κα ≡ (1/d)cα, so that  

–1
 Fd,υ (κα) = P[(1/d)R2 ≤ κ 2

α] = P[R  ≤ cα] = α = Fd,υ (cα/d)     →     cα = d [Fd,υ] (α) , (9) 

–1
where [Fd,υ] (•) is the inverse of the c.d.f. for the Fd,υ distribution.  (See the functions:   

sizeparam_normal_distn and sizeparam_t_distn in Appendix A.)    

 

          

                    

                    

2. The Algorithm 
 

The core of our methodology takes as given an estimated ellipsoid, ε(μ, Σ , cα), and 

seeks a sample of points on its surface.  These points will be our sample of stress events (or 

shock scenarios), chosen to form a regularly spaced grid or mesh on the ellipsoid.  The 

identification of scenario points proceeds in seven discrete steps, numbered as follows:   

  3. Translation (mean adjustment) 
  2. Rotation of the eigenvectors to the coordinate axes 
  1. Stretching to a unit spheroid 
  0. Assigning a uniform shock scenario mesh 

–1
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–1. Invert step 1:  Stretching back to an ellipsoid 
–2. Invert step 2:  Rotation 
–3. Invert step 3:  Translation 
 

This numbering scheme emphasizes that each negatively numbered step simply reverses the 

effect of the corresponding positively numbered step.   

             
 
     Figure 1a  Estimated isoprobability ellipse    Figure 1b  Shifted/stretched to a unit circle  
 
 

We illustrate the transformations here with depictions of two-dimensional ellipses, 

although the process applies to ellipsoids of arbitrary dimensions.  To make the figures more 

concrete, we show the short-term (W1=RST) and long-term (W2=RLT) interest rates as the risk 

factors under consideration.  Figure 1a depicts such an estimated two-dimensional isoprobabilit

ellipse, ε(μ, Σ–1, cα), where w, μ  2 and Σ–1  22, and the mean of the estimated ellipse lies 

at  = [RST, RLT].  Figure 1b depicts the same ellipse after transformation – centering at the orig

and rotating and stretching to a unit circle.  The “vertex” shocks in Figure 1a, W○ = {E, F, G, H

lie on the principal axes or eigenvectors of the ellipse (we denote vertex shocks here with the 

circle subscript, “○”).  Vertex shocks generally represent joint changes in all shock dimensions.

For example, the point F represents a simultaneous increase in the long-term rate (FRLT –  RLT > 

0), together with a smaller decrease in the short-term rate (FRST – RST < 0).  More generally, whe

the shock scenarios are in arbitrary dimensions (i.e., w  d), there will be 2d vertex shocks, 
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namely “up” and “down” along each axis or eigenvector. 

2.a. Mapping an arbitrary ellipsoid to the unit spheroid 

The first step (i.e., Step 3) in our algorithm translates (i.e., shifts or mean-adjusts) the 

ellipsoid to be centered at the origin, via an affine transformation, Tw:x: w  d → x  d.  

Specifically, we translate x = w – .  In general, assuming a column vector,   d, a matrix W 

dn, and a column of ones, 1n  n: 

  X = W –  [1 T
n ]  (10) 

shifts all of the points in W simultaneously.  The shape and orientation of the ellipse do not 

change during translation, so there is no adjustment to the inverse dispersion matrix, Σ–1.  (See 

the functions:  translate and center_at_origin in Appendix A.) 

The next two steps (Step 2 and Step 1):  (a) rotate the ellipsoid so that the principal axes 

fall along the coordinate axes, and (b) stretch it to a unit spheroid, ε(0d, Id, 1).21  We combine 

these steps into a single transformation, Tx:z: x  d → z  d.     The original (i.e., translated) 

ellipsoid is the set of points: 

  ε(0 , Σ–1, c ) = {x  d : xT –1
d α Σ x = cα}.  (11) 

Substitute the eigenvalue decomposition,  

 Σ–1 = ΓΛΓ T,  (12) 

for the inverse dispersion matrix in this definition, where Γ is a matrix of orthogonal unit 

eigenvectors, as columns: 

 Γ = [γ1, …, γd] , (13) 

                                                 
21 We begin with a “short form” of the derivation. A longer explication that better matches the software 
implementation appears in Appendix B.  This first formulation of the transformation was suggested by Alexander 
McNeil in private correspondence. 
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and Λ is a diagonal matrix of the corresponding eigenvalues, Λ = diag(λ1, …, λd).  Because the 

dispersion matrix, Σ, is assumed to be positive definite, its inverse is also positive definite, and 

therefore Σ–1 has positive eigenvalues.22  Thus, we may split the eigenvalue matrix into the 

product of square roots, to rewrite equation (11) as: 

 ε(0d, Σ
–1, c ) = {x  d : xTΓΛ½Λ½Γ Tx = c } = {x  d : xT ½

α α ΓΛ c –1
α Λ½Γ Tx = 1}.  (14) 

Now write z = (c –½
α Λ½Γ T) x, and observe that this defines an invertible linear transformation: 

 z = (c –½
α Λ½Γ T) x = Tx:z x  (15) 

Substituting, the original ellipsoid can then be written:  

 ε(0d, Σ
–1, cα) = {x = T –1

x:z z : z  d, zTz = 1}.  (16) 

From this, we conclude that T –1
x:z  maps the unit spheroid, ε(0d, Id, 1) = {z  d : zTz = 1}, into 

the ellipsoid, and that Tx:z maps the original ellipsoid to the unit spheroid. 

2.b. Assigning a scenario mesh over the unit spheroid 

Given the unit spheroid in d, we now turn our attention to the central problem of 

distributing systematically on its surface a regularly spaced mesh of N points (denoted by the 

hash subscript, “#”).  This can be seen as a special case of the N-points best-packing problem, 

which has a long history in mathematics.23     

                                                 
22 Because the unit eigenvectors in this case are orthogonal, we may apply the equality, Γ–1 = ΓT, which is a property 
of any orthogonal matrix. Thus, we may calculate the diagonalization instead as ΓΛΓ–1, if that is more convenient.  
In any case, the calculations necessary for the eigenvalue decomposition are implemented as part of most matrix 
algebra packages, for example, the Matlab® eig() or Scilab spec() function. 
23 See, for example, Hardin and Saff (2004), Dragnev (2002), and Saff and Kuijlaars (1997) for an introduction to 
the best-packing literature.  The best-packing problem has applications in virology, organic chemistry (“buckyball” 
large carbon molecules), electrostatics, signal processing, fluid dynamics, and, of course, the design of soccer balls.  
A general solution involves a highly non-linear optimization with non-linear constraints, and is notoriously difficult 
(see Smale (1998), Problem #7).  Most approaches involve so-called “elliptic Fekete points,” which minimize the 
aggregate log potential among the points.  For example, Thomson’s problem minimizes the aggregate Coulomb 
potential according to an inverse-square law (for example, mutually repelling electrons on a metal sphere).  More 
generally, one can minimize the aggregate Riesz s-potential with exponent s > 0.  The special case when s =  is 
known as Tammes’s problem or the “hard-spheres problem.”  In practice, approximate solutions are typically 
determined by computationally complex iterative algorithms; in a pair of papers, Bendito, Carmona, Encinas, Gesto 
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2.b.i.  A binary hypercube mesh 

We propose a simple binary mesh algorithm that has linear computational complexity, 

O(N), and generates scenario points, Z# = {z#1, …, z#N}, that span all d dimensions, stand in clear 

relation to the vertices of the underlying ellipsoid, and are exactly evenly spaced (in the sense 

that the distance between any point and its closest neighbor is the same for all points).24  The 

binary mesh has some desirable properties.  First, the algorithm is minimal in the sense that it 

generates a single scenario for each of the 2d orthants of the d-dimensional state space, and so 

achieves the minimum number of scenarios required to reach every “corner” of the space – i.e., 

into every orthant defined by the principal axes of the ellipsoid. Note that the mesh size is 

exponential in the number of state dimensions. Second, each of the 2d corner points in the binary 

mesh involves all of the individual principal components of the distribution moving 

simultaneously by an equal magnitude relative to their individual variances.  In practical 

applications, these “equally weighted” shocks – and the related vertex shocks, included in the 

ternary mesh discussed below – are likely to have special interpretative significance.  Finally, 

since subsequent analysis of each scenario is likely to be computationally expensive, a minimal 

mesh economizes on computational resources.   

The algorithm proceeds in two phases.  The first phase amounts to finding the corners of 

a d-dimensional hypercube enclosing the unit spheroid.  More formally, let Ξd  d denote the 

smallest hypercube enclosing the d-dimensional unit spheroid (i.e., a hypercube centered at the 

origin, with sides of length 2), and let ZΞ  dN denote a matrix of points on the surface of Ξd.  

                                                                                                                                                             
& Sánchez (2008) and Bendito, Carmona, Encinas & Gesto (2008) find solutions to various constrained variants of 
the Fekete problem with computational complexity ranging from O(N2.8) to O(N15).   
24 Bern and Plassmann (2000) and Glasserman (2004) provide a useful overview of mesh-generation and lattice 
algorithms.   
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In the case of a binary mesh, the columns of ZΞ are merely the distinct corner points of Ξd.   The 

first step assigns a value of either +1 or –1 to each element in a d-dimensional vector, and 

considers all possible combinations of such assignments.  For example, for a standard 3-

dimensional sphere, the first phase generates a set of N = 2d = 23 = 8 points: 

1 1 1 1 1 1 1 1
  ZΞ  1 1 1 1 1 1 1 1  , (17) 
1 1 1 1 1 1 1 1

which are the corners of a minimal cube enclosing the sphere.  The corner points of Ξd span the 

scenario state space and are also clearly related to the vertex points, which are the points of 

tangency between the unit spheroid and Ξd.   

In the second step, for each corner point (i.e., each column of ZΞ), we scale the 

coordinates to find a matching vector of unit length, so that the latter points lie on the surface of 

the unit spheroid.  This simply requires division by the length of each vector:  

1/ 2
 d 

 z   z 2
#i #ij   . (18)

   j 1 

In the special case of the minimal binary mesh, | z#ij | = 1 for each “corner” point, so the problem 

reduces to division by z#i  = d ½ :  

 Z# = d– ½ZΞ. (19)

Note that the scaling in equation (19) applies only to the special case of a minimal binary mesh. 

 

 

 

2.b.ii.  Higher-order meshes 

If additional scenarios are needed, the mesh can be extended in an obvious fashion by 

generating a regular Cartesian mesh (i.e., a square lattice) of the required fineness on each two-

dimensional face of the enclosing hypercube.  Define the fineness, φ, of the mesh as the number

of “regularly” (in a sense to be defined below) spaced points to iterate along each dimension of 
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each two-dimensional face of Ξd.
25  For example, the binary mesh (φ=2) jumps from corner to 

corner (+1 and –1) of each face, while a ternary mesh (φ=3) iterates over three values (+1, 0, and 

–1) in each dimension.  Using C d
 j  to indicate the number of combinations of d dimensions 

chosen j at a time, the general formula for the number of surface points generated in this way is 

given by: 

d

 N   d C d db
  bd b 2   2 ,   for φ ≥ 2, d ≥ 3. (20) 

b3

This represents the count of all the points on the full φd grid, minus those that do not lie on an 

exterior two-dimensional face.  Thus, in three dimensions, there are 33–20(3!/3!)(3-2)3 = 26 

points in a ternary mesh, which includes the binary corners, plus the midpoint of each edge and 

face of the minimal enclosing cube, but excluding the origin itself.  In practice, the origin might 

be included in the sample as a base-case scenario.  The scenario count can also be written as the 

sum of three terms, the cardinalities of the sets of:  (a) binary corner points; (b) non-corner 

exterior edge points; and (c) non-edge exterior face points:26 

                                                 
25 We define a mesh of fineness φ = 1, or “unary mesh,” as point set consisting of the center of each two-
dimensional face.  Beyond the binary case, such Cartesian meshes still have linear computational complexity in the 
number of scenarios, O(N), although N itself will grow rapidly as the fineness of the Cartesian mesh increases, via 
the curse of dimensionality.  It is easily verified that the number of scenarios grows rapidly as φ and d increase.  As 
Studer (1997, pp. 14-15) notes, dimensionality under a standard Basel methodology can be quite large.  The number 
of two-dimensional faces on the hypercube is an exponentially increasing function of d.  Specifically, the number of 
pairwise combinations of dimensions is Cd

2 = ½(d(d–1)), and the number of parallel two-dimensional faces for each 
pair of dimensions is 2d–2, for an overall total number of faces given by [½(d(d–1))2d–2] for d ≥ 2.  As a result, with 
φ=10 and d=6, for example, there are already 201,280 scenarios in the overall mesh.  If subsequent scenario 
processing is computationally costly, then there is a strong incentive not to use too fine a mesh.   
26 The three-dimensional case (d=3) is deceptively simple, and consists essentially of subtracting a (φ–2)3 cubical 
grid of points from an enclosing φ3 cubical grid.  In higher dimensions, the calculation gets more complicated.  To 
prove the equivalence between equations (20) and (21), note that (21) can be rewritten as: 

2

N C d 
db 2d b    2 b , 

b0

which merges easily with the summation term in (20).  In other words, it is sufficient to show that: 


d

 d  C d db   b
db 2  2 , 

b0
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 N = [2d] + [d 2d–1](φ – 2) + [d d–3 2
 (d – 1)2 ](φ – 2) ,     φ ≥ 2, d ≥ 3. (21) 

The factors in square brackets in (21) are the counts of corners, edges, and faces, respectively 

(see Coxeter (1973), Eq. 7-25, p. 122), and the factor involving (φ – 2) is the number of non-

boundary points per edge or face.  Again, the simple scaling defined for the corner points in 

equation (19) does not apply in general for the points of a higher-order mesh.27 

For mesh finenesses beyond ternary (i.e., for φ ≥ 3), scenario clustering becomes a 

concern.  That is, if scenarios are evenly spaced on Ξd for φ ≥ 3, they will show a tendency to 

cluster once mapped back to the unit spheroid.  If we denote the radius of the spheroid as r, equal 

to the half-length of a side of the enclosing hypercube, then the (d–1)-dimensional “surface,” c, 

and d-dimensional “volume,” vc, of the hypercube are given by, respectively: 

 c(d, r) = 2d(2r)d–1      and      vc(d, r) = (2r)d . (22) 

In contrast, the surface and volume, s and vs, of the corresponding spheroid are given by: 

2 d 2r d 1

 s (d ,r)   
( 2)d

 d 2r d

(d ,r)s 
(1 d 2)

     and       (23)

where Γ(•) is the standard gamma function.28  The amount of hypercube surface condensed onto 

the spheroid surface by our mapping grows rapidly as d increases.  Noting that it is an increasing 

positive function, independent of r, define the cube/sphere surface (or volume) contraction ratio: 

 

                                                                                                                                                             
which is true by the Binomial Theorem.  Equation (21) also works (trivially) for d=1 and d=2. 
27 For large point sets, a Cartesian mesh has the familiar advantages of low-discrepancy sequences:  it is efficient 
(i.e., requires relatively few scenarios) in the sense that the mesh is nowhere dense on Ξd for φ < ∞, but 
representative (i.e., covers the full surface) in the sense that it is dense in the limit as φ → ∞.  Other low-discrepancy 
sequences are also possible – for example, Sobol’ or Halton sequences (see Niederreiter, 1992) – but the Cartesian 
mesh has advantages in tractability. 
28 For details, see Coxeter (1973), Eqs. 7-31 and 7-32, and Table I(iii), and the surrounding discussion.  Leopardi 
(2007) and Hamkins (1996) survey some useful results regarding the unit sphere in d.  Note that the “volume” of a 
spheroid in d is equivalent (via homeomorphism) to the “surface” of a (d+1)-dimensional spheroid in d+1. 
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 c (d ) vc (d ) (2d )(1 d 2)
g(d )     , 

 s (d ) vs (d )  d 2
 (24) 

For example, g(3) ≈ 1.91, but doubling the dimensionality to d = 6 implies a six-fold increase in 

the ratio:  g(6) ≈ 12.38.  It is not obvious how this contraction is distributed on the sphere.   

 

Figure 2a  Mesh (φ=30), no adjustment           Figure 2b  Mesh (φ=30), with adjustment 
 
 

Because the possibility of clustering, we make a compensating adjustment to the mesh 

points assigned to the enclosing hypercube.  Our adjustment is based on the spherical distance, θ, 

between two points, za and zb in d (see Leopardi (2007), p. 12): 

 









 

ba

ba1
ba cos),(

zz

zz
zz

T

  . (25) 

This represents the angle in radians between the vectors, and is unchanged when we map the pair 

of points on the hypercube surface to their projections on the spheroid.  We propose to equalize 

this spherical distance between consecutive points in the mesh.  Specifically, let {ζij}  Z# 

denote the subset of scenario points confined to a single two-dimensional face of the hypercube.  

For each such two-dimensional face, we generate a mesh of φ rows and φ columns, indexed 

i=1,…,φ and j=1,…,φ respectively, and then adjust the points so that the spherical distance is the 
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same for any pair of consecutive points, ζij and ζi,j+1, in row i (or ζij and ζi+1, j in column j).  

Figure 3 depicts the adjustment for the case d = 4, φ = 11.  The rectangular grid indicates the 

placement of mesh points without adjustment; the adjusted points appear as gray dots. 

 
Figure 3  Clustering adjustment on a single two dimensional face (d=4, φ=11) 

 

The algorithm first interpolates equidistant scenarios along the edges – i.e., from corner 

to corner – of an arbitrary two-dimensional face (see the function hypercube_mesh in Appendix 

A).  Anchored from the edge points, the interior points of the face are then similarly interpolated.

Given two endpoints, ζi1 and ζiφ, for row i, let the subscript p = 1,…,φ index the points, {ζip},  to 

be interpolated, and define θ *
i  ≡ θ(ζi1, ζiφ)/(φ–1) as the spherical distance between any two 

consecutive points in the row.  The argument works symmetrically for points {zp,j} in column j.  

(The interpolations begin from the corner points, {ζ1,1, ζ1φ, ζφ1 , ζφφ}, whose length is known to 

be d ½ .)  The pth point in the row is then a convex combination of the endpoints:  

  

 ζip = βp ζi1 + (1–βp) ζiφ ,     0 ≤ β ≤ 1 (26) 

where the spherical distance from the pth point to the two endpoints is given by, respectively:  
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and: 
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Combining equations (26)-(28) and solving for βp, we find: 

 
))cos(()())1cos(()(

))cos(()())1cos(((
*

111
*

11

*
1

*
1

iiiiiiiiiiii

iiiiiiii
p

pp

pp















ζζζζζζζζζζ

ζζζζζζ
TTTT

TT  )
 , (29) 

which then identifies the pth point via equation (26).  As noted above, this produces 

approximately even spacing of the points over the unit spheroid, with substantially less 

computational cost than exactly even spacing.  Figures 2a and 2b depict the effect of 

approximately even spacing, comparing a relatively fine mesh (φ = 30), in three dimensions, with 

and without the clustering adjustment. 

As d and φ increase, the number of points in the mesh increases rapidly, and the process 

begins to resemble a quasi-Monte Carlo integration. Ideally, the mesh would exhibit the typical 

uniformity and discrepancy properties for such sequences (see Niederreiter, 1992).  

Unfortunately, our mesh does not align neatly with standard techniques for establishing low-

discrepancy bounds.  For example, the usual star-discrepancy is defined on rectangular regions 

and not on the ball, making it inefficient for our case.29 In lieu of a formal proof of low 

discrepancy, we offer a simple measure that we call “pseudo-uniformity” (PU) to describe the 

spacing of our point sets. Working within a single two-dimensional face (see Figure 3), we 

search across all pairs of neighboring points within a row or column, and calculate the ratio of 

the largest and smallest distances (per equation 25) between such pairs:30 

                                                 
29 Discrepancy analysis on the ball remains outside our present scope, but is an interesting topic for future research. 
30 By symmetry, it is sufficient to consider only a single two-dimensional face, since all mesh points come from such 
a face, and all such faces are essentially identical. Also by symmetry, it is sufficient to match pairs of points along a 
column, since scanning the rows yields the identical calculation in the transpose. 
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We wish to confirm that the PU ratio is stable: i.e., that spherical distance does not diverge as the

dimensionality of the problem increases. Results appear in Figure 4. PU clearly converges to a 

constant as φ increases for a fixed number of dimensions. This constant is strictly greater than 

one, confirming that our methodology fails to produce exactly even spacing.  Increasing the 

number of dimensions actually improves pseudo-uniformity by introducing extra dimensions 

(not on the face) that are identical across all points in the comparison.  Unsurprisingly, the binary 

mesh (φ = 2) exhibits perfect pseudo-uniformity (PU = 1) in all cases. 

 

 

 
 

Figure 4  Pseudo-uniformity (PU) of the mesh 
 

 

The implementation in Appendix A uses “memoization” of the calculations in Equations 

(26)-(29) to improve computational performance.  Each 2-dimensional face of the hypercube is 

covered with an identical mesh, which can be created once and then pasted onto each face in 

turn.  For a d-dimensional hypercube, the total count of distinct 2-dimensional faces is given by:  
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We confirm the linear computational complexity of the overall mesh-generation algorithm with a 

simple implementation experiment for a mesh of d  {3, …, 10}  and φ  {2, …, 10}.  The 

results appear in Figure 5a, which reveals the nearly linear relationship between total points and 

total time.  This is confirmed in the second-order fitted trend line in the chart: 

  Total Time = 0.0171 + 210–06 Points – 510–14 Points 2. (32)

Note that the first-order term in this response function suggests a typical time cost of 2 

microseconds per point under the test configuration.31   

 

 

    Figure 5a  Scalability of mesh creation                  Figure 5b  Time cost per sample point 
 

Figure 5b offers some further nuance, by spreading the sample separately by number of

dimensions, d, and mesh fineness, φ, and by normalizing the time cost by the total number of 

points in the sample.  As the sample size increases from the minimum, the fixed costs of the 

 

                                                 
31 The test machine was a laptop running an Intel® dual-core T5500 CPU at 1.66 GHz, with 2GB of RAM, and a 
2GB virtual memory paging file.  Sample sizes ranged from 8 (for d=3, φ=2) to 779,264 (for d=10, φ=10). 
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generation process are quickly averaged away, and the cost per point converges toward a stable 

value.  The time per point for the largest sample (d=10, φ=10) is 2.0812 10–06 seconds, which is 

consistent with the first-order slope coefficient in equation (31). 

 
 

2.c.  Inverting the mapping 

Given a mesh of scenario points, Z#, the next step is to invert Step 1, stretching the unit 

spheroid back to the original shape of the ellipsoid and keeping track of the mesh as we perform 

the transformation.  Using the definitions established in Step 1, this inversion is straightforward.  

Since Ty:z = c –½
α Λ½ is the transformation that produced the unit spheroid (see equation (15)), its 

inverse will precisely undo that stretching:   

 Y# = [Ty:z
–1]Ty:zY# = [Ty:z

–1]Z# = [cα
½Λ–½]Z#.

 (33) 

Step –2 inverts Step 2, rotating the unit ellipsoid back to its original orientation, keeping 

track of the mesh of scenario points as we apply the inverse of  Tx:y = Γ–1:  

 X# = [Tx:y
–1]Tx:y X# = [Tx:y

–1]Y# = [Γ]Y#.
 (34) 

The final step is to reverse the mean-adjustment of Step 3, above, by adding the mean 

back into each of our scenario points: 

 W# = X# +  [1 T
N ] , (35) 

the columns of which are a set of systematically chosen scenario points in the original coordinate 

space.  Recursively substituting equations (32) and (33) into equation (34), we have a closed-

form expression for the scenario set in the original coordinate space, stated as a function W#(•) of 

the mesh, Z#, generated on the unit spheroid: 

 W#(Z#) = [c ½
α ΓΛ–½] Z# +  [1 T

N ] . (36) 

Stating W#(•) as a function of Z# emphasizes the separation between the transformation function 
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and the generation of the underlying mesh.  Indeed, Z could be any set of points on the unit 

spheroid, not necessarily generated via a Cartesian mesh.  For example, large scenario sets 

generated via computationally costly best-packing techniques might be calculated in advance and 

cached, to be transformed via equation (35) as the elliptical parameters are estimated. 

3. Practical Extensions 
 

In this section we offer two simple extensions to the basic framework presented above to 

address situations of particular interest in financial risk management applications. 

3.a.  Non-monotonic loss functions 

Financial valuations frequently increase or decrease monotonically with underlying 

fundamental factors.  For example, the value of U.S. Treasury bills, a short-term discount 

instrument, always falls when short-term interest rates rise.  Just as commonly, however, the loss 

function that relates financial valuations to fundamental factors is non-monotonic.32  Indeed, the 

relationship between position valuations and underlying factors can easily grow complicated 

when diverse portfolios, structured securities, derivatives, or hedging instruments are involved.  

For example, hedged portfolios typically leave a residual (and non-monotonic) basis risk, which 

is then frequently magnified via leverage to create economically significant exposures. 

As a simple example, consider the payoff to a short butterfly spread portfolio on short-

term interest rates (log-transformed), which are assumed to be an exogenous, elliptically 

distributed, fundamental factor.33  Figure 6 depicts the payoffs to an options portfolio comprising 

                                                 
32 Studer (1997, §3.4) shows how to use the Levenberg-Marquardt algorithm to search iteratively for the exact 
maximum loss scenario in the special case of quadratic portfolio value (or loss) functions.  The quasi-Monte Carlo 
approach handles the more general case of arbitrary continuous loss functions.  Studer (1997, p. 47) shows that 
Levenberg-Marquardt converges in polynomial time, O(d3ln(1/ε)), for the quadratic case. 
33A short butterfly spread is an option portfolio that is simultaneously:  (a) long one in-the-money call option with 
strike price Ka; (b) short two at-the-money call options with strike price Kb; and (c) long one out-of-the-money call 
option with strike price Kc, where Ka < Kb < Kc, and Kc–Kb = Kb–Ka.  The payoff to the portfolio at expiration is zero 
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a pair of such butterfly spreads, one for each of two underlying factors (i.e., interest rates).  The 

non-monotonicity of the payoff function is immediately apparent from the chart.  A key point in 

this case is that extreme (modest) values for the underlying fundamental factors are associated 

with modest (large) losses on the options portfolio.   

 

Figure 6    Non-monotonicity and anisotropy in a simple options portfolio 
 

A second fundamental point, also readily apparent from the chart, is that the payoff 

function is anisotropic.34  Furthermore, it is clear that the anisotropy in this case is an artifact of 

the basic nature of the simple options that compose the portfolio.  Because simple options are 

such fundamental building blocks of modern finance, one should anticipate that the anisotropy of 

payoffs will be the rule, rather than the exception, in portfolios of any complexity. 

To address the issue of non-monotonicity, the scenario set should provide coverage of the 

                                                                                                                                                             
when the underlying is at the extremes:  (–, Ka] and [Kc, +); the payoff is negative (i.e., the loss is positive) when 
the underlying closes in the middle:  (Ka, Kc).  It is easy to extend this to a multivariate example by including 
additional fundamental factors (for example, long-term interest rates) together with additional butterfly spreads on 
those new factors. 
34 Anisotropy is the characteristic of “directional dependence.”  That is, the properties of an anisotropic object differ 
depending on the direction traversed through the object.  Familiar examples come from materials engineering, and 
include wood (which behaves differently when cut with vs. across the grain), and diamonds (which jewelers attempt 
to cleave along facets defined by the crystalline structure of the gem). 
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interior of the spheroid, and not focus solely on a mesh defined on an extreme shell (for example, 

for cα, with α = 99.9%).  One simple possibility would be to nest collection of elliptical 

isoprobability shells, differing only in the probability threshold, α.  Unfortunately, this would not 

deal efficiently with the problem of anisotropy, because the points on each shell would be 

radially collinear with points on the other concentric shells.  We propose instead a radial 

adjustment of the points in a given spheroid mesh, Z#.  In effect, the scenario points would be 

systematically plunged to varying depths into the interior of the ball.  Given a mesh, Z d
#  N, 

of N scenario points, multiply each column of the mesh by a different radial factor, Ri  [0, 1], 

i{1, …, N}.  Collecting the radial factors into a diagonal matrix, R = diag(R1, …, RN)  NN, 

we can write this contracted mesh, Z۞  dN, as:  

 Z۞ = Z#R. (37) 

One obvious choice of radial factors is a one-dimensional low-discrepancy sequence, 

such as a van der Corput sequence.  The low-discrepancy property allows for even distribution o

the contraction factors.  In addition, the van der Corput sequence is well understood (see 

Glasserman (2004, ch. 5), and Niederreiter (1992, ch. 3)).  Note that an approximately uniform 

distribution of contraction factors, Ri, will create a clustering of points toward the center of the 

spheroid, since the volume of a spheroid follows a simple d th-order power-law.  With this in 

mind, a more uniform distribution of points within the spheroid is achieved by “volume-

adjusting” the equally spaced van der Corput points via element-wise exponentiation of the 

vector of radial factors:   

f 

 Z۞ = Z#Rd, where Rd
  ≡ diag(R1

1/d, …, RN
1/d) . (38) 

Of course, the contractions in Rd will tend toward unity as d grows large in high-dimensional 

applications.  In these situations, it may be preferable to apply contraction only to a subset of the 
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factor dimensions. 

3.b.  Univariate shocks 

This section presents a straightforward extension of the algorithm to identify univariate 

shocks.  We consider two varieties of univariate shocks:  “conditional” and “unconditional.” 

Unconditional univariate shocks are determined by marginalizing out each dimension of the joint 

distribution, and then identifying the two-tailed critical points on the univariate marginal 

distribution corresponding to the extreme-event probability threshold, α.  Conditional univariate 

shocks are located where lines extending from the center of the ellipsoid in directions parallel to 

the coordinate axes (i.e., the individual shock dimensions) intersect the isoprobability ellipsoid. 

We first consider unconditional (i.e., marginal) shocks, which are the natural 

interpretation in many applications.  We use a permutation matrix to extract the marginal.  For 

elliptically distributed random vectors, W ~ Ed(μ, Σ), the univariate marginal distributions are 

also elliptical, Wi ~ E 2
1(μi, σi ), with a distribution of the same “kind” as the underlying joint 

distribution.35  For example, a multivariate normal distribution has normal margins, and a 

multivariate t distribution has t margins with the same degrees of freedom parameter.  More 

generally, any affine transformation of an elliptical random vector is also elliptical.  Thus, if W  

μ + AS is elliptical, with S  k  a spherical random vector and A  dk, then its affine 

transformation, V = b + BW with V,b  m  and B  md, is an m-dimensional elliptical random 

vector (m < d) of the same type as W.  To extract a marginal, choose b = 0m (i.e., a vector of 

zeros) and B = P, a matrix of 0s and 1s, with PPT = Im.  P is a “permutation and deletion” matrix, 

                                                 
35 More formally, the joint and marginal distributions will share the same characteristic 

T
generator, ψ*(u), which is 

related to the more familiar characteristic function for the distribution, ψ(t) = (eit X).  Note that the characteristic 
generator is a function of a scalar variable, u, while the characteristic function is a function of a d-dimensional 
parameter, t.  For elliptical distributions, the characteristic generator and characteristic function are related via:  ψ(t) 
= (eitTX) = eitTμψ*(tTΣt).  For example, for the multivariate normal distribution, the characteristic generator takes the 
form ψ*(u) = e–u/2, while for the multivariate t distribution the form of ψ*(u) is considerably more complicated.  See 
Fang, Kotz, and Ng (1990, §2.1 and §3.3.6), and McNeil, Frey, and Embrechts (2005, §3.3) for further details. 



36 

which extracts the desired marginal elements, Pμ and PΣPT, of the location vector and dispersion 

matrix, Σ = AAT.  For example, with m = 2:   
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 , (39) 

P is an affine transformation, so the marginal distribution, V ~ Em(Pμ, PΣPT), is elliptical of the 

same type as W (See Frahm (2004), p. 13).  The univariate marginal is simply a special case with 

m = 1.  In summary, given a specific functional form for the distribution, determining the 

unconditional (marginal) univariate shock scenarios is straightforward. 

On the other hand, conditional univariate shocks (denoted by the perpendicular subscript, 

“”) lie on the same ellipsoid that defines the multivariate shocks.  For each conditional 

univariate shock scenario, the most natural conditioning restriction is to assume no change in the 

other d–1 dimensions, providing an estimate of the ceteris paribus sensitivity to the individual 

shock dimensions.  The upshot is a set of 2d univariate scenarios, up and down in each 

dimension, that lie on the surface of the chosen isoprobability ellipsoid.  For example, consider 

the conditional univariate shocks, W = {e, f, g, h}, located on line segments extending from the 

center of the ellipse in Figure 1, above.  The point f in Figure 1 represents an upward shock to the 

long-term interest rate (fRLT – RLT > 0), conditional on no change to the short-term interest rate 

(fRST – RST = 0).  In general, we can represent the set of conditional univariate shocks, W, as a 

d2d matrix, W = [w1, …, w2d], each column of which represents a single shock scenario, wi 

 d, i  {1, …, 2d}.     

To facilitate the analysis, we manipulate the conditional shocks after Step 3, mean-

adjustment of the ellipsoid.  Let xi  [0, …, 0, xi, 0, …, 0]T denote a conditional univariate shock 

vector on the mean-adjusted ellipsoid (i.e., xi is a vector with shock value xi in the ith dimension, 
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and zeroes elsewhere), and let ωii denote the ith diagonal element of the matrix Σ–1.  The shocks 

are solutions to the quadratic form, cα = x T
i Σ

–1 xi, or, substituting: 

  cα = [0, …, 0, xi, 0, …, 0]TΣ–1[0, …, 0, xi, 0, …, 0] = xi
2ωii.  (40) 

Rearranging, we can solve for the pairs of shocks of opposite sign:  xi = ±(cα/ωii)
½.   More 

explicitly, for i{1, …, d} let: 

 xi
↑ = +(cα/ωii)

½,  (41) 

and, 

  xi
↓ = –(cα/ωii)

½. (42) 

Denote the corresponding vectors as x ↑
i  and x ↓

i .  For example, the (mean-adjusted) matrix of 

points [e, f, g, h] (as columns) from Figure 1 above, would be relabeled as [x ↑
1 , x ↑

2 , x ↓
2 , x ↓

1 ] 

respectively.  Slightly more generally, let Ω define the diagonal matrix, Ω ≡ diag(ω11, …,ωdd), 

and write the d2d matrix of univariate shocks, X   d2d  
 , as the adjoin of the dd up and down 

shock matrices, ±c ½
α Ω–½:   

  X
 = cα

½[ Ω–½  | –Ω–½ ] (43) 

(See the function:  univariate_shocks in Appendix A.) 

These 2d conditional univariate shocks, X  d2d, can augment the set of N mesh-based 

scenarios, X#  dN, described in Step 0 above.  Thus, let X d
#  (N+ 2d) denote the adjoin:   

 X# = [ X# | X ] = [ X# | cα
½Ω–½ | –cα

½Ω–½ ]. (44) 

This is essentially a notational convenience that allows us to manipulate all of the shock 

scenarios at once.  Carrying this forward, we get the adjoin-modified versions of equation (34): 

 W# = X# +  [1(N+ 2d)
T] . (45) 

and equation (35): 

 W#(Z#) = cα
½[ ΓΛ–½Z# | Ω

–½ | –Ω–½ ] +  [1(N+ 2d)
T] . (46) 
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4. Conclusions 
We have developed a quasi-Monte-Carlo algorithm for systematic generation of shock scenarios 

from an arbitrary multivariate elliptical distribution.  The algorithm selects a systematic mesh of 

arbitrary fineness that approximately evenly covers an isoprobability ellipsoid in d dimensions.  

Choosing scenarios systematically reduces the danger of “blind spots” in a stress test.  The 

methodology is particularly well suited to elliptically distributed market risk factors, where the 

elliptical distribution provides “plausibility guidance” for generating internally consistent 

scenarios.  The methodology is intended for an implementation context – commonly encountered 

in regulatory stress tests – where the loss function is unobservable and scenarios cannot be tested 

sequentially or otherwise tailored to known features of particular portfolios. A corollary of the 

imperfect knowledge of the portfolio is that the set of relevant stress factors composing the 

scenarios may also be unclear, encouraging the casting of a wide net for possible factors.  The 

algorithm has linear computational complexity, which distinguishes it from computationally 

costly point-packing routines that generate precisely evenly distributed points.  We suggest 

extensions to address the issues of non-monotonic loss functions and univariate shocks.  We also 

provide tested and commented source code in Appendix A. 
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 Appendix A:  Source code 

This appendix presents source code written for use under M ®
ATLAB  version 7.2.  The 

code itself is available from the authors, or for download from:  http://www.xxxxxxxxx.yyy.zzz 

WARNING:  This research is a work in progress, and the source code 
presented here, although possessing no errors known to the authors, has not 
yet been properly reviewed nor fully tested.  This software is presented as-is 
and for informational purposes only.  We accept no responsibility for its use 
in production applications.   

 
The code comes in two sections. The hyperellipsoid code implements a M ®

ATLAB  class.  All of 

these *.m files should therefore be kept in a separate subdirectory, with the specific directory 

name: @hyperellipsoid.  The remainder of the source code consists of supporting functions, 

which should be kept in a separate directory from the code for the hyperellipsoid class mentioned 

above. 

Typical use of involves first, creating a hyperellipsoid object from estimated 

distributional parameters, and then choosing a mesh of the desired fineness on the surface of the 

hyperellipsoid.  Here is a code sample based on a normal distribution: 

 

Ellipsoidal mesh for a normal distribution 
 
    % Estimate the mean and covariance matrix from the data: 

[mu, sig] = my_normdist_estimator(data); 

% The number of dimensions, d, is taken directly from the data: 
d = length(data(1,:)); 

% Get the size parameter for a normal dist’n at a 95% threshold : 
calpha = sizeparam_normal_distn(.95, d); 

% Create a hyperellipsoid object.  Note that the constructor 
%  takes the inverse of the disperion matrix: 
hellip = hyperellipsoid(mu, inv(sig), calpha); 

% Scenarios are calculated as a mesh of fineness 3. 
%  The number of scenarios is a function of the dimensionality  
%  of the hyperellipsoid and the fineness of the mesh: 
scenarios = hypercube_mesh(3, hellip); 
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Here is another code sample based on a multivariate t distribution: 
 

Ellipsoidal mesh for a t distribution 
 
    % Estimate the mean, covariance, and d.o.f. from the data: 

 [mu, sig, nu] = my_tdist_estimator(data); 

 % The number of dimensions, d, is taken from the data: 
 d = length(data(1,:)); 

 % Get the size parameter for a normal dist’n at a 95% threshold : 
 calpha = sizeparam_t_distn(.95, d, nu); 

 % Create a hyperellipsoid object; note the use of the inverse of sig: 
 hellip = hyperellipsoid(mu, inv(sig), calpha); 

 % Scenarios are calculated as a mesh of fineness 3. 
 scenarios = hypercube_mesh(3, hellip); 

   
 
   
   
 
   
   
 
   
   
 
   
   
 

 

 



41 

Appendix B: Alternate algorithm for mapping an ellipse to the 
unit spheroid  

In the interest of enhanced unit-testing, modularity, and source-code re-use, the algorithm 

implement in Appendix A is structured differently from the exposition provided in section 2.a 

above.  Thus, we re-derive here the transformation, Tx:z, in a form that more closely matches the 

software implementation.   

We begin by identifying d linearly independent points (denoted by the four-pointed star 

subscript, “”) for which we know the coordinates under both the “input” and “output” 

coordinate systems.  An input point is some x
i  d for which the matching output point z

i = 

Tx:z xi is known.  For the dd input and output matrices X


 and Z


, we have:   

 Z


 = Tx:z X  (47) 

implying: 

 Tx:z = Z
 X

–1.  (48) 

For input points, choose the d positive vertices, X


  dd, which lie on the eigenvectors of the 

inverse dispersion matrix, Σ–1.    (See the functions:  make_ellipsoid_from_vertices and 

vertices in Appendix A.)  For a non-degenerate ellipsoid, these eigenvectors are linearly 

independent, ensuring that we can diagonalize Σ–1 via the spectral decomposition, Σ–1 = ΓΛΓ T, 

where Γ and  Λ are as defined in section 2.a above.  The distance from the origin of the ith such 

vertex (i.e., the half-length of the corresponding principal axis) is: 

 li  (cα/λi)
½.   (49) 

Using this fact to define a diagonal matrix of principal axis half-lengths,  

 L  diag(l1, …, ld) = diag[(cα/λ1)
½., …, (cα/λd)

½] = cα
½Λ–½.   (50) 

we can write the input points, X


, in terms of the eigenvector matrix, and the principal-axis half-
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lengths, li:   

 X


 = [l1γ1, …, ldγd] = ΓL = Γ(cα
½Λ–½) (51) 

For the matching “output” points, Z


 we choose the vertices of the unit simplex in d, given by 

the columns of the identity matrix, Id, so that:  

 Z


 = Id = Tx:z (Γcα
½Λ–½) = Tx:z X. (52) 

implying the transformation:  

 Tx:z
 = (Tx:z

–1) –1 = (Γcα
½Λ–½) –1 = cα

–½Λ½Γ –1 (53) 

which decomposes neatly into separate transformations for rotation, 

 Tx:y = Γ –1, (54) 

and stretching, 

 Ty:z
 = cα

–½Λ½. (55) 

 (See the functions:  linear_transform and rotate_to_coordaxes in Appendix A.) 
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